Discover
/
Article

Statistical mechanics of simple fluids: beyond van der Waals

MAR 01, 1980
Equilibrium properties of dense fluids, notoriously difficult to treat theoretically, can now be understood by reference to model systems, such as a fluid of “hard spheres,” and to calculations on high‐speed computers.
Joel L. Lebowitz
Eduardo M. Waisman

Dense fluids, defined to include both dense gases and liquids, have the reputation of being especially difficult to deal with theoretically. This reputation is not undeserved. Unlike dilute gases and crystalline solids, which can be thought of as deviants from well understood ideal states, the ideal gas and the ideal harmonic crystal, the dense fluid lies far from any recognizable landmark. This rules out the use of straightforward, convergent or asymptotic, expansions—the all‐purpose tool of the theoretical physicist—and makes even the hardy wince.

This article is only available in PDF format

References

  1. 1. Several detailed review articles as well as books have appeared in recent years. We list here a few of them and refer the interested reader to these for technical details and further references: J. A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976). https://doi.org/RMPHAT
    H. C. Andersen, D. Chandler, J. D. Weeks, Advances in Chemical Physics 34, 105 (1976).
    J. P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic, New York (1976).
    G. Stell in Statistical Mechanics, Part A: Equilibrium Techniques, B. Berne, ed., Plenum, New York (1977). There are also other review articles on liquids in this volume.
    J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworths, London (1969) 2nd Edition.

  2. 2. Physica 73, (1974). This volume contains both technical and historical articles about the subject.

  3. 3. D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York (1969);
    C. J. Thompson, Mathematical Statistical Mechanics, Macmillan, New York (1972).

  4. 4. See the article by M. J. Klein in reference 2, page 28.

  5. 5. Quoted by S. G. Brush in The Physics Teacher 11, 261 (1973).
    See also S. G. Brush, The Kind of Motion We Call Heat, North Holland, New York (1976).

  6. 6. N. G. van Kampen, Phys. Rev. 135, 362 (1964).https://doi.org/PHRVAO

  7. 7. M. Kac, G. E. Uhlenbeck, P. C. Hemmer, J. Math. Phys. 4, 216 and (1963);
    M. Kac, G. E. Uhlenbeck, P. C. Hemmer, 5, 60 (1964).

  8. 8. G. Baker, Phys. Rev. 122, 1477 (1961).

  9. 9. J. L. Lebowitz, O. Penrose, J. Math. Phys. 7, 98 (1966).https://doi.org/JMAPAQ

  10. 10. O. Penrose, J. L. Lebowitz, J. Stat. Phys. 3, 211 (1971).https://doi.org/JSTPBS

  11. 11. D. Chandler, J. D. Weeks, Phys. Rev. Lett. 25, 149 (1970). https://doi.org/PRLTAO
    J. D. Weeks, D. Chandler, H. C. Andersen, J. Chem. Phys. 55, 5421 (1971); https://doi.org/JCPSA6
    J. D. Weeks, D. Chandler, H. C. Andersen, 54, 5237 (1976).
    H. C. Andersen, J. D. Weeks, D. Chandler, Phys. Rev. A 4, 1597 (1971);
    H. C. Andersen, J. D. Weeks, D. Chandler, J. Chem. Phys. 57, 2620 (1972).https://doi.org/JCPSA6

  12. 12. L. Verlet, J.‐J. Weis, Phys. Rev. A 5, 939 (1972).

  13. 13. L. S. Ornstein, F. Zernike, Proc. K. Akad. Wet. A 17, 793 (1914).
    English translation can be found in The Equilibrium Theory of Classical Fluids, H. L. Frisch, J. L. Lebowitz, eds., Benjamin, New York (1964).

  14. 14. N. M. Rosenbluth, A. W. Rosenbluth, J. Chem. Phys., 22, 881 (1954).
    B. J. Adler, T. E. Wainright, J. Chem. Phys., 27, 1208 (1957).
    W. W. Wood, J. D. Jacobson, J. Chem. Phys., 27, 1207 (1957).

  15. 15. H. C. Longuet‐Higgins, B. Widom, Mol. Phys. 8, 549 (1964).

  16. 16. J. K. Percus, G. J. Yevick, Phys. Rev. 110, 1 (1958).https://doi.org/PHRVAO

  17. 17. J. L. Lebowitz, Phys. Rev. A 133, 895 (1964).https://doi.org/PRVAAH

  18. 18. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).https://doi.org/PRLTAO

  19. 19. E. Thiele, J. Chem. Phys. 39, 474 (1963).https://doi.org/JCPSA6

  20. 20. N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51, 635 (1969).https://doi.org/JCPSA6

  21. 21. H. Reiss, H. L. Frisch, J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).https://doi.org/JCPSA6

  22. 22. J. K. Percus, G. J. Yevick, Phys. Rev. 136, B290, (1964).

  23. 23. The “super” accuracy of the exponential approximation for Lennard‐Jones tluids may indeed be somewhat fortuitous; see G. Stell, J.‐J. Weis, Phys. Rev., to be published.

More about the Authors

Joel L. Lebowitz. Rutgers University, New Brunswick, N.J..

Eduardo M. Waisman. Systems, Science and Software, San Diego, Cal..

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1980_03.jpeg

Volume 33, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.