Statistical mechanics of simple fluids: beyond van der Waals
DOI: 10.1063/1.2913994
Dense fluids, defined to include both dense gases and liquids, have the reputation of being especially difficult to deal with theoretically. This reputation is not undeserved. Unlike dilute gases and crystalline solids, which can be thought of as deviants from well understood ideal states, the ideal gas and the ideal harmonic crystal, the dense fluid lies far from any recognizable landmark. This rules out the use of straightforward, convergent or asymptotic, expansions—the all‐purpose tool of the theoretical physicist—and makes even the hardy wince.
References
1. Several detailed review articles as well as books have appeared in recent years. We list here a few of them and refer the interested reader to these for technical details and further references: J. A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976). https://doi.org/RMPHAT
H. C. Andersen, D. Chandler, J. D. Weeks, Advances in Chemical Physics 34, 105 (1976).
J. P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic, New York (1976).
G. Stell in Statistical Mechanics, Part A: Equilibrium Techniques, B. Berne, ed., Plenum, New York (1977). There are also other review articles on liquids in this volume.
J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworths, London (1969) 2nd Edition.2. Physica 73, (1974). This volume contains both technical and historical articles about the subject.
3. D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York (1969);
C. J. Thompson, Mathematical Statistical Mechanics, Macmillan, New York (1972).4. See the article by M. J. Klein in reference 2, page 28.
5. Quoted by S. G. Brush in The Physics Teacher 11, 261 (1973).
See also S. G. Brush, The Kind of Motion We Call Heat, North Holland, New York (1976).6. N. G. van Kampen, Phys. Rev. 135, 362 (1964).https://doi.org/PHRVAO
7. M. Kac, G. E. Uhlenbeck, P. C. Hemmer, J. Math. Phys. 4, 216 and (1963);
M. Kac, G. E. Uhlenbeck, P. C. Hemmer, 5, 60 (1964).8. G. Baker, Phys. Rev. 122, 1477 (1961).
9. J. L. Lebowitz, O. Penrose, J. Math. Phys. 7, 98 (1966).https://doi.org/JMAPAQ
10. O. Penrose, J. L. Lebowitz, J. Stat. Phys. 3, 211 (1971).https://doi.org/JSTPBS
11. D. Chandler, J. D. Weeks, Phys. Rev. Lett. 25, 149 (1970). https://doi.org/PRLTAO
J. D. Weeks, D. Chandler, H. C. Andersen, J. Chem. Phys. 55, 5421 (1971); https://doi.org/JCPSA6
J. D. Weeks, D. Chandler, H. C. Andersen, 54, 5237 (1976).
H. C. Andersen, J. D. Weeks, D. Chandler, Phys. Rev. A 4, 1597 (1971);
H. C. Andersen, J. D. Weeks, D. Chandler, J. Chem. Phys. 57, 2620 (1972).https://doi.org/JCPSA612. L. Verlet, J.‐J. Weis, Phys. Rev. A 5, 939 (1972).
13. L. S. Ornstein, F. Zernike, Proc. K. Akad. Wet. A 17, 793 (1914).
English translation can be found in The Equilibrium Theory of Classical Fluids, H. L. Frisch, J. L. Lebowitz, eds., Benjamin, New York (1964).14. N. M. Rosenbluth, A. W. Rosenbluth, J. Chem. Phys., 22, 881 (1954).
B. J. Adler, T. E. Wainright, J. Chem. Phys., 27, 1208 (1957).
W. W. Wood, J. D. Jacobson, J. Chem. Phys., 27, 1207 (1957).15. H. C. Longuet‐Higgins, B. Widom, Mol. Phys. 8, 549 (1964).
16. J. K. Percus, G. J. Yevick, Phys. Rev. 110, 1 (1958).https://doi.org/PHRVAO
17. J. L. Lebowitz, Phys. Rev. A 133, 895 (1964).https://doi.org/PRVAAH
18. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).https://doi.org/PRLTAO
19. E. Thiele, J. Chem. Phys. 39, 474 (1963).https://doi.org/JCPSA6
20. N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51, 635 (1969).https://doi.org/JCPSA6
21. H. Reiss, H. L. Frisch, J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).https://doi.org/JCPSA6
22. J. K. Percus, G. J. Yevick, Phys. Rev. 136, B290, (1964).
23. The “super” accuracy of the exponential approximation for Lennard‐Jones tluids may indeed be somewhat fortuitous; see G. Stell, J.‐J. Weis, Phys. Rev., to be published.
More about the Authors
Joel L. Lebowitz. Rutgers University, New Brunswick, N.J..
Eduardo M. Waisman. Systems, Science and Software, San Diego, Cal..