Discover
/
Article

Statistical Mechanics of Neural Networks

DEC 01, 1988
Studies of disordered systems have generated new insights into the cooperative behavior and emergent computational properties of large, highly connected networks of simple, neuron‐like processors.
Haim Sompolinsky

A neural network is a large, highly interconnected assembly of simple elements. The elements, called neurons, are usually two‐state devices that switch from one state to the other when their input exceeds a specific threshold value. In this respect the elements resemble biological neurons, which fire—that is, send a voltage pulse down their axons—when the sum of the inputs from their synapses exceeds a “firing” threshold. Neural networks therefore serve as models for studies of cooperative behavior and computational properties of the sort exhibited by the nervous system.

This article is only available in PDF format

References

  1. 1. W. S. McCulloch, W. A. Pitts, Bull. Math. Biophys. 5, 115 (1943).https://doi.org/BMBIAO

  2. 2. D. O. Hebb, The Organization of Behavior, Wiley, New York (1949).

  3. 3. F. Rosenblatt, Principles of Neurodynamics, Spartan, Washington, D.C. (1961).
    M. Minsky, S. Papert, Perceptrons, MIT P., Cambridge, Mass. (1988).

  4. 4. B. Widrow, in Self‐Organizing Systems, M. C. Yovits, G. T. Jacobi, G. D. Goldstein, eds., Spartan, Washington, D.C. (1962).

  5. 5. S. Amari, K. Maginu, Neural Networks 1, 63 (1988), and references therein.https://doi.org/NNETEB

  6. 6. S. Grossberg, Neural Networks 1, 17 (1988), and references therein.https://doi.org/NNETEB

  7. 7. T. Kohonen, Self Organization and Associative Memory, Springer‐Verlag, Berlin (1984).
    T. Kohonen, Neural Networks 1, 3 (1988).https://doi.org/NNETEB

  8. 8. W. A. Little, Math. Biosci. 19, 101 (1974). https://doi.org/MABIAR
    W. A. Little, G. L. Shaw, Math. Biosci. 39, 281 (1978).https://doi.org/MABIAR

  9. 9. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982). https://doi.org/PNASA6
    J. J. Hopfield, D. W. Tank, Science 233, 625 (1986), and references therein.https://doi.org/SCIEAS

  10. 10. M. Mezard, G. Parisi, M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore (1987).
    K. Binder, A. P. Young, Rev. Mod. Phys. 58, 801 (1986).https://doi.org/RMPHAT

  11. 11. V. Braitenberg, in Brain Theory, G. Palm, A. Aertsen, eds., Springer‐Verlag, Berlin (1986), p. 81.

  12. 12. K. Binder, ed., Applications of the Monte Carlo Methods in Statistical Physics, Springer‐Verlag, Berlin (1984).

  13. 13. D. E. Rumelhart, J. L. McClell and the PDP Group, Parallel Distributed Processing, MIT P., Cambridge, Mass. (1986).

  14. 14. D. Kleinfeld, H. Sompolinsky, Biophys. Jour., in press, and references therein.

  15. 15. S. R. Kelso, A. H. Ganong, T. H. Brown, Proc. Natl. Acad. Sci. USA 83, 5326 (1986). https://doi.org/PNASA6
    G. V. diPrisco, Prog. Neurobiol. 22, 89 (1984).

  16. 16. D. J. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. A 32, 1007 (1985). https://doi.org/PLRAAN
    D. J. Amit, H. Gutfreund, H. Sompolinsky, Ann. Phys. N. Y. 173, 30 (1987), and references therein.https://doi.org/APNYA6

  17. 17. M. Abeles, Local Cortical Circuits, Springer‐Verlag Berlin (1982).

  18. 18. D. J. Willshaw, O. P. Buneman, H. C. Longuet‐Higgins, Nature 222, 960 (1969). https://doi.org/NATUAS
    A. Moopen, J. Lambe, P. Thakoor, IEEE SMC 17, 325 (1987).

  19. 19. E. Gardner, J. Phys. A 21, 257 (1988). https://doi.org/JPHAC5
    A. D. Bruce, A. Canning, B. Forrest, E. Gardner, D. J. Wallace, in Neural Networks for Computing, J. S. Denker, ed., AIP, New York (1986) p. 65.

  20. 20. A. Crisanti, H. Sompolinsky, Phys. Rev. A 37, 4865 (1988).https://doi.org/PLRAAN

  21. 21. S. Kirkpatrick, C. D. GellatJr., M. P. Vecchi, Science 220, 671 (1983).https://doi.org/SCIEAS

More about the Authors

Haim Sompolinsky. Racah Institute of Physics, Hebrew University, Jerusalem.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1988_12.jpeg

Volume 41, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.