Tunable lasers facilitate the finding of relative probabilities for forming product molecules in specified quantum states from reagents in selected states, a long‐standing objective in chemical dynamics.
The study of chemical reaction kinetics can be likened to the task of making a motion picture of a reaction. The trouble thus far with achieving this goal seems to be the problem of too many would‐be actors who strut upon the stage without proper cue and mumble their lines too rapidly to be understood—for chemical reactions occur with the ease of striking a match and at a speed so fast (on a subpicosecond time scale for the making of new bonds and breaking of old ones) as to be a severe challenge to the moviemaker who would like to record individual frames.
This article is only available in PDF format
References
1. R. D. Levine, R. B. Bernstein, Molecular Reaction Dynamics, Clarendon Press, Oxford (1974).
2. P. R. Brooks, E. F. Hayes Jr, (eds.), State‐to‐State Chemistry, ACS Symposium Series No. 56, Amer. Chem. Soc., Wash. D.C. (1977).
3. J. I. Steinfeld, M. S. Wrighton, (eds.), The Laser Revolution in Energy‐Related Chemistry, M. I.T. Press, Cambridge, Mass. (1976); T. F. George, (ed.), Theoretical Aspects of Laser Radiation and its Interaction with Atomic and Molecular Systems, Univ. of Rochester, N.Y. (1978).
8. H. H. Dispert, M. W. Geis, P. R. Brooks, J. Chem. Phys. 70, 5317 (1979).https://doi.org/JCPSA6
9. Z. Karny, R. C. Estler, R. N. Zare, J. Chem. Phys. 69, 5199 (1978).https://doi.org/JCPSA6
10. R. N. Zare, P. J. Dagdigian, Science 185, 739 (1974); https://doi.org/SCIEAS R. N. Zare, Far. Disc. Chem. Soc. 67, 7 (1979); J. L. Kinsey, Ann. Rev. Phys. Chem. 28, 349 (1977).https://doi.org/ARPLAP
17. D. A. Lichtin, S. Datta‐Ghosh, K. R. Newton, R. B. Bernstein, Chem. Phys. Lett. 75, 214 (1980).https://doi.org/CHPLBC
18. D. L. Lubman, R. Naaman, R. N. Zare, J. Chem. Phys. 72, 3034 (1980).https://doi.org/JCPSA6
19. A. Gupta, D. S. Perry, R. N. Zare, J. Chem. Phys. 72, 6250 (1980).https://doi.org/JCPSA6
20. A. Torres‐Filho, J. G. Pruett, J. Chem. Phys. 72, 6736 (1980).https://doi.org/JCPSA6
21. A. M. F. Lau, Phys. Rev. A 13, 139 (1976) and A. M. F. Lau, 19, 1117 (1979); https://doi.org/PLRAAN, Phys. Rev. A J. M. Yuan, T. F. George, F. J. McLafferty, Chem. Phys. Lett. 40, 163 (1976); https://doi.org/CHPLBC J. M. Yuan, T. F. George, J. Chem. Phys. 70, 990 (1979); https://doi.org/JCPSA6 A. E. Orel, W. H. Miller, J. Chem. Phys. 70, 4393 (1979) and A. E. Orel, W. H. Miller, 73, 241 (1980).https://doi.org/JCPSA6, J. Chem. Phys.
22. P. Hering, P. R. Brooks, R. F. CurlJr, R. S. Judson, R. S. Lowe, Phys. Rev. Lett. 44, 687 (1980).https://doi.org/PRLTAO
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.