Tunable lasers facilitate the finding of relative probabilities for forming product molecules in specified quantum states from reagents in selected states, a long‐standing objective in chemical dynamics.
The study of chemical reaction kinetics can be likened to the task of making a motion picture of a reaction. The trouble thus far with achieving this goal seems to be the problem of too many would‐be actors who strut upon the stage without proper cue and mumble their lines too rapidly to be understood—for chemical reactions occur with the ease of striking a match and at a speed so fast (on a subpicosecond time scale for the making of new bonds and breaking of old ones) as to be a severe challenge to the moviemaker who would like to record individual frames.
This article is only available in PDF format
References
1. R. D. Levine, R. B. Bernstein, Molecular Reaction Dynamics, Clarendon Press, Oxford (1974).
2. P. R. Brooks, E. F. Hayes Jr, (eds.), State‐to‐State Chemistry, ACS Symposium Series No. 56, Amer. Chem. Soc., Wash. D.C. (1977).
3. J. I. Steinfeld, M. S. Wrighton, (eds.), The Laser Revolution in Energy‐Related Chemistry, M. I.T. Press, Cambridge, Mass. (1976); T. F. George, (ed.), Theoretical Aspects of Laser Radiation and its Interaction with Atomic and Molecular Systems, Univ. of Rochester, N.Y. (1978).
8. H. H. Dispert, M. W. Geis, P. R. Brooks, J. Chem. Phys. 70, 5317 (1979).https://doi.org/JCPSA6
9. Z. Karny, R. C. Estler, R. N. Zare, J. Chem. Phys. 69, 5199 (1978).https://doi.org/JCPSA6
10. R. N. Zare, P. J. Dagdigian, Science 185, 739 (1974); https://doi.org/SCIEAS R. N. Zare, Far. Disc. Chem. Soc. 67, 7 (1979); J. L. Kinsey, Ann. Rev. Phys. Chem. 28, 349 (1977).https://doi.org/ARPLAP
17. D. A. Lichtin, S. Datta‐Ghosh, K. R. Newton, R. B. Bernstein, Chem. Phys. Lett. 75, 214 (1980).https://doi.org/CHPLBC
18. D. L. Lubman, R. Naaman, R. N. Zare, J. Chem. Phys. 72, 3034 (1980).https://doi.org/JCPSA6
19. A. Gupta, D. S. Perry, R. N. Zare, J. Chem. Phys. 72, 6250 (1980).https://doi.org/JCPSA6
20. A. Torres‐Filho, J. G. Pruett, J. Chem. Phys. 72, 6736 (1980).https://doi.org/JCPSA6
21. A. M. F. Lau, Phys. Rev. A 13, 139 (1976) and A. M. F. Lau, 19, 1117 (1979); https://doi.org/PLRAAN, Phys. Rev. A J. M. Yuan, T. F. George, F. J. McLafferty, Chem. Phys. Lett. 40, 163 (1976); https://doi.org/CHPLBC J. M. Yuan, T. F. George, J. Chem. Phys. 70, 990 (1979); https://doi.org/JCPSA6 A. E. Orel, W. H. Miller, J. Chem. Phys. 70, 4393 (1979) and A. E. Orel, W. H. Miller, 73, 241 (1980).https://doi.org/JCPSA6, J. Chem. Phys.
22. P. Hering, P. R. Brooks, R. F. CurlJr, R. S. Judson, R. S. Lowe, Phys. Rev. Lett. 44, 687 (1980).https://doi.org/PRLTAO
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
November 10, 2025 10:22 AM
This Content Appeared In
Volume 33, Number 11
Get PT in your inbox
PT The Week in Physics
A collection of PT's content from the previous week delivered every Monday.
One email per week
PT New Issue Alert
Be notified about the new issue with links to highlights and the full TOC.
One email per month
PT Webinars & White Papers
The latest webinars, white papers and other informational resources.