Discover
/
Article

Stability and Transport Processes in Tokamak Plasmas

JAN 01, 1992
With the macroscopic behavior of tokamak plasmas now reasonably well understood, a major challenge is to develop the physics of plasma turbulence and of the particle and heat fluxes it induces.
James D. Callen
Benjamin A. Carreras
Ronald D. Stambaugh

Tokamak experiments have made dramatic progress over the past two decades, and today plasma parameters are nearing the values needed for a fusion reactor. (See the article by J. Geoffrey Cordey, Robert J. Goldston and Ronald R. Parker on page 22.) In November 1991 the first deuterium‐tritium experiments in the Joint European Torus in Abingdon, England, generated a peak fusion power of almost 2 megawatts and a total energy release of 2 megajoules in a 2‐second pulse. Concomitant progress has been made in understanding the basic physics of tokamak plasmas; this was made possible by major developments in plasma science, nonlinear theory, plasma diagnostic capabilities and supercomputer calculations.

This article is only available in PDF format

References

  1. 1. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Plenum, New York (1984).
    J. A. Bittencourt, Fundamentals of Plasma Physics, Pergamon, Oxford (1986).

  2. 2. See I. E. Tamm, A. D. Sakharov, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 1, M. A. Leontovich, ed., Pergamon, New York (1961), p. 1.

  3. 3. L. Spitzer Jr, in report WASH‐115, US Atomic Energy Commission (1952), p. 12.

  4. 4. L. A. Artsimovich, Nucl. Fusion 12, 215 (1972). https://doi.org/NUFUAU
    J. Wesson, Tokamaks, Clarendon, Oxford (1987).
    R. B. White, Theory of Tokamak Plasmas, North‐Holland, Amsterdam (1989).

  5. 5. H. Grad, H. Rubin, in Theoretical and Experimental Aspects of Controlled Nuclear Fusion, Proc. Second UN Int. Conf. On the Peaceful Uses of Atomic Energy, vol. 31, United Nations, Geneva (1958) p. 190.
    V. D. Shafranov, Sov. Phys. JETP 26, 682 (1960); https://doi.org/SPHJAR
    V. D. Shafranov, Sov. J. At. En. 13, 1149 (1963).

  6. 6. J. P. Freidberg, Ideal Magnetohydrodynamics, Plenum, New York (1987), p. 258ff.
    G. Schmidt, Physics of High Temperature Plasmas, 2nd ed., Academic, New York (1979), chs. 4 and 5.

  7. 7. L. C. Bernard, F. J. Helton, R. W. Moore, T. N. Todd, Nucl. Fusion 23, 1475 (1983). https://doi.org/NUFUAU
    F. T. Troyon, R. Gruber, H. Sauremann, S. Semengato, S. Succi, Plasma Phys. Controlled Fusion 26, 209 (1984). https://doi.org/PPCFET
    A. Sykes, M. F. Turner, S. Patel, in Proc. Eleventh European Conf. Controlled Fusion and Plasma Phys., vol. 2, European Phys. Soc., Petit‐Lancy, Switzerland (1983) p. 363.

  8. 8. For high‐β experiments on the ISX‐B tokamak, see G. H. Neilson et al., Nucl. Fusion 23, 285 (1983). https://doi.org/NUFUAU
    For the DIII tokamak experiments, see K. H. Burrell et al., Nucl. Fusion 23, 536 (1983). https://doi.org/NUFUAU
    For a discussion of the scaling described by equation 1, see R. D. Stambaugh et al., in Plasma Physics and Controlled Nuclear Fusion Research 1984, vol. 1, Int. Atomic Energy Agency, Vienna (1985) p. 217.
    For PBX‐M tokamak experiments, see N. Sauthoff et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990, vol. 1, Int. Atomic Energy Atomic, Vienna (1991) p. 709.
    For the DIII‐D tokamak experiments, see E. A. Lazarus et al., Phys. Fluids B 3, 2220 (1991).https://doi.org/PFBPEI

  9. 9. B. Coppi, A. Ferreira, J. W.‐K. Mark, J. J. Ramos, Nucl. Fusion 19, 715 (1979). https://doi.org/NUFUAU
    C. Mercier, in Plasma Physics and Controlled Nuclear Fusion Research 1978, vol. 1, Int. Atomic Energy Agency, Vienna (1979) p. 701.
    P. J. Fielding, F. A. Haas, ibid., p. 630.
    D. Lortz, J. Nuhrenburg, Phys. Lett. A 68, 49 (1978).https://doi.org/PYLAAG

  10. 10. H. P. Furth, J. Killeen, M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). https://doi.org/PFLDAS
    J. D. Callen et al., in Plasma Physics and Controlled Nuclear Fusion Research 1978, vol. 1, Int. Atomic Energy Agency, Vienna (1979) p. 415.
    H. P. Furth, Phys. Fluids 28, 1595 (1985).https://doi.org/PFLDAS

  11. 11. J. D. Callen, “Transport Processes in Magnetically Confined Plasmas,” U. Wisc, report CPTC 91‐18 (December 1991), to be published in Phys. Fluids B.
    J. D. Callen et al., Phys. Fluids B 2, 2869–2960 (1990).

  12. 12. F. L. Hinton, R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976). https://doi.org/RMPHAT
    S. P. Hirshman, D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).https://doi.org/NUFUAU

  13. 13. For work on MACROTOR, see S. J. Zweben, R. J. Taylor, Nucl. Fusion 21, 193 (1981). https://doi.org/NUFUAU
    For recent, comprehensive studies on TEXT, see C. P. Ritz et al., Phys. Rev. Lett. 62, 1844 (1989).https://doi.org/PRLTAO

  14. 14. C. P. Ritz et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990, vol. 2, Int. Atomic Energy Agency, Vienna (1991), p. 589.

  15. 15. H. Biglari, P. H. Diamond, P. W. Terry, Phys. Fluids B 2, 1 (1990).https://doi.org/PFBPEI

  16. 16. K. C. Shaing, E. C. CrumeJr, Phys. Rev. Lett. 63, 2369 (1989).https://doi.org/PRLTAO

  17. 17. R. J. Groebner, K. H. Burrell, R. P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).https://doi.org/PRLTAO

  18. 18. R. J. Taylor et al., Phys. Rev. Lett. 63, 2365 (1989).https://doi.org/PRLTAO

  19. 19. L. Garcia, P. H. Diamond, B. A. Carreras, J. D. Callen, Phys. Fluids 28, 2147 (1985).https://doi.org/PFLDAS

  20. 20. P. H. Diamond, B. A. Carreras, Comments Plasma Phys. Controlled Fusion 10, 271 (1987).
    B. A. Carreras, L. Garcia, P. H. Diamond, Phys. Fluids 30, 1388 (1987).https://doi.org/PFLDAS

  21. 21. Y. Nagayama et al., “ECE and X‐Ray Image Reconstructions of Sawtooth Oscillations on TFTR,” report PPPL‐2773, Princeton Plasma Phys. Lab., Princeton, N.J. (October 199l), to be published in Phys. Rev. Lett.

  22. 22. L. C. Bernard, F. J. Helton, R. W. Moore, Comput. Phys. Commun. 24, 377 (1981).https://doi.org/CPHCBZ

  23. 23. J. N. Leboeuf et al., Phys. Fluids B 3, 2291 (1991).https://doi.org/PFBPEI

More about the Authors

James D. Callen. University of Wisconsin.

Benjamin A. Carreras. Oak Ridge National Laboratory.

Ronald D. Stambaugh. General Atomics, San Diego.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_01.jpeg

Volume 45, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.