Stability and Transport Processes in Tokamak Plasmas
DOI: 10.1063/1.881338
Tokamak experiments have made dramatic progress over the past two decades, and today plasma parameters are nearing the values needed for a fusion reactor. (See the article by J. Geoffrey Cordey, Robert J. Goldston and Ronald R. Parker on page 22.) In November 1991 the first deuterium‐tritium experiments in the Joint European Torus in Abingdon, England, generated a peak fusion power of almost 2 megawatts and a total energy release of 2 megajoules in a 2‐second pulse. Concomitant progress has been made in understanding the basic physics of tokamak plasmas; this was made possible by major developments in plasma science, nonlinear theory, plasma diagnostic capabilities and supercomputer calculations.
References
- 1. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Plenum, New York (1984). 
 J. A. Bittencourt, Fundamentals of Plasma Physics, Pergamon, Oxford (1986).
- 2. See I. E. Tamm, A. D. Sakharov, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 1, M. A. Leontovich, ed., Pergamon, New York (1961), p. 1. 
- 3. L. Spitzer Jr, in report WASH‐115, US Atomic Energy Commission (1952), p. 12. 
- 4. L. A. Artsimovich, Nucl. Fusion 12, 215 (1972). https://doi.org/NUFUAU 
 J. Wesson, Tokamaks, Clarendon, Oxford (1987).
 R. B. White, Theory of Tokamak Plasmas, North‐Holland, Amsterdam (1989).
- 5. H. Grad, H. Rubin, in Theoretical and Experimental Aspects of Controlled Nuclear Fusion, Proc. Second UN Int. Conf. On the Peaceful Uses of Atomic Energy, vol. 31, United Nations, Geneva (1958) p. 190. 
 V. D. Shafranov, Sov. Phys. JETP 26, 682 (1960); https://doi.org/SPHJAR
 V. D. Shafranov, Sov. J. At. En. 13, 1149 (1963).
- 6. J. P. Freidberg, Ideal Magnetohydrodynamics, Plenum, New York (1987), p. 258ff. 
 G. Schmidt, Physics of High Temperature Plasmas, 2nd ed., Academic, New York (1979), chs. 4 and 5.
- 7. L. C. Bernard, F. J. Helton, R. W. Moore, T. N. Todd, Nucl. Fusion 23, 1475 (1983). https://doi.org/NUFUAU 
 F. T. Troyon, R. Gruber, H. Sauremann, S. Semengato, S. Succi, Plasma Phys. Controlled Fusion 26, 209 (1984). https://doi.org/PPCFET
 A. Sykes, M. F. Turner, S. Patel, in Proc. Eleventh European Conf. Controlled Fusion and Plasma Phys., vol. 2, European Phys. Soc., Petit‐Lancy, Switzerland (1983) p. 363.
- 8. For high‐β experiments on the ISX‐B tokamak, see G. H. Neilson et al., Nucl. Fusion 23, 285 (1983). https://doi.org/NUFUAU 
 For the DIII tokamak experiments, see K. H. Burrell et al., Nucl. Fusion 23, 536 (1983). https://doi.org/NUFUAU
 For a discussion of the scaling described by equation 1, see R. D. Stambaugh et al., in Plasma Physics and Controlled Nuclear Fusion Research 1984, vol. 1, Int. Atomic Energy Agency, Vienna (1985) p. 217.
 For PBX‐M tokamak experiments, see N. Sauthoff et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990, vol. 1, Int. Atomic Energy Atomic, Vienna (1991) p. 709.
 For the DIII‐D tokamak experiments, see E. A. Lazarus et al., Phys. Fluids B 3, 2220 (1991).https://doi.org/PFBPEI
- 9. B. Coppi, A. Ferreira, J. W.‐K. Mark, J. J. Ramos, Nucl. Fusion 19, 715 (1979). https://doi.org/NUFUAU 
 C. Mercier, in Plasma Physics and Controlled Nuclear Fusion Research 1978, vol. 1, Int. Atomic Energy Agency, Vienna (1979) p. 701.
 P. J. Fielding, F. A. Haas, ibid., p. 630.
 D. Lortz, J. Nuhrenburg, Phys. Lett. A 68, 49 (1978).https://doi.org/PYLAAG
- 10. H. P. Furth, J. Killeen, M. N. Rosenbluth, Phys. Fluids 6, 459 (1963). https://doi.org/PFLDAS 
 J. D. Callen et al., in Plasma Physics and Controlled Nuclear Fusion Research 1978, vol. 1, Int. Atomic Energy Agency, Vienna (1979) p. 415.
 H. P. Furth, Phys. Fluids 28, 1595 (1985).https://doi.org/PFLDAS
- 11. J. D. Callen, “Transport Processes in Magnetically Confined Plasmas,” U. Wisc, report CPTC 91‐18 (December 1991), to be published in Phys. Fluids B. 
 J. D. Callen et al., Phys. Fluids B 2, 2869–2960 (1990).
- 12. F. L. Hinton, R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976). https://doi.org/RMPHAT 
 S. P. Hirshman, D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).https://doi.org/NUFUAU
- 13. For work on MACROTOR, see S. J. Zweben, R. J. Taylor, Nucl. Fusion 21, 193 (1981). https://doi.org/NUFUAU 
 For recent, comprehensive studies on TEXT, see C. P. Ritz et al., Phys. Rev. Lett. 62, 1844 (1989).https://doi.org/PRLTAO
- 14. C. P. Ritz et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990, vol. 2, Int. Atomic Energy Agency, Vienna (1991), p. 589. 
- 15. H. Biglari, P. H. Diamond, P. W. Terry, Phys. Fluids B 2, 1 (1990).https://doi.org/PFBPEI 
- 16. K. C. Shaing, E. C. CrumeJr, Phys. Rev. Lett. 63, 2369 (1989).https://doi.org/PRLTAO 
- 17. R. J. Groebner, K. H. Burrell, R. P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).https://doi.org/PRLTAO 
- 18. R. J. Taylor et al., Phys. Rev. Lett. 63, 2365 (1989).https://doi.org/PRLTAO 
- 19. L. Garcia, P. H. Diamond, B. A. Carreras, J. D. Callen, Phys. Fluids 28, 2147 (1985).https://doi.org/PFLDAS 
- 20. P. H. Diamond, B. A. Carreras, Comments Plasma Phys. Controlled Fusion 10, 271 (1987). 
 B. A. Carreras, L. Garcia, P. H. Diamond, Phys. Fluids 30, 1388 (1987).https://doi.org/PFLDAS
- 21. Y. Nagayama et al., “ECE and X‐Ray Image Reconstructions of Sawtooth Oscillations on TFTR,” report PPPL‐2773, Princeton Plasma Phys. Lab., Princeton, N.J. (October 199l), to be published in Phys. Rev. Lett. 
- 22. L. C. Bernard, F. J. Helton, R. W. Moore, Comput. Phys. Commun. 24, 377 (1981).https://doi.org/CPHCBZ 
- 23. J. N. Leboeuf et al., Phys. Fluids B 3, 2291 (1991).https://doi.org/PFBPEI 
More about the Authors
James D. Callen. University of Wisconsin.
Benjamin A. Carreras. Oak Ridge National Laboratory.
Ronald D. Stambaugh. General Atomics, San Diego.
