Discover
/
Article

SQUIDs, Brains and Gravity Waves

MAR 01, 1986
Superconducting quantum interference devices are so sensitive to magnetic flux that they can map the tiny magnetic fields emanating from the human brain and detect the submicroscopic motions of gravity‐wave detectors.
John Clarke

▸ A lonely instrument in Baja California records tiny fluctuations in the Earth’s magnetic field, giving valuable information on the location of geothermal energy.

▸ An extremely quiet amplifier detects electrical noise generated by the fluctuating spins in a collection of chlorine nuclei—the first observation of nuclear‐spin noise.

▸ Superconducting gradiometers in liquid helium measure tiny fluctuating magnetic fields emanating from the human brain (see figure 1), pinpointing the source of the electrical discharge associated with focal epilepsy.

▸ An aluminum bar weighing 4800 kg and cooled to 4.2 K rests in a vacuum chamber at Stanford University, working as the world’s most sensitive monitor of gravitational radiation.

References

  1. 1. For a review of geophysical applications, see J. Clarke, IEEE Trans. Magn. MAG‐19, 288 (1983).https://doi.org/IEMGAQ

  2. 2. T. Sleator, E. L. Hahn, C. Hilbert, J. Clarke, Phys. Rev. Lett. 55, 1742 (1985)https://doi.org/PRLTAO

  3. 3. D. S. Barth, W. Sutherling, J. EngelJr., J. Beatty, Science 223, 293 (1984).https://doi.org/SCIEAS

  4. 4. M. Bassan, W. M. Fairbank, E. Mapoles, M. S. McAshan, P. F. Michelson, B. Moskowitz, K. Ralls, R. C. Taber, in Proc. 3rd Marcel Grossmann Meeting on General Relativity, H. Ning, ed., North Holland, New York (1983), p. 667.

  5. 5. J. E. Zimmerman, P. Thiene, J. T. Harding, J. Appl. Phys. 41, 1572 (1970).https://doi.org/JAPIAU

  6. 6. See, for example, M. Tinkham, Introduction to Superconductivity, McGraw‐Hill, New York (1975).

  7. 7. For a detailed description of SQUIDS and copious references, see: J. Clarke, in Superconductor Applications: SQUIDS and Machines, B. B. Schwartz, S. Foner, eds., Plenum, New York (1977) p. 67;
    J. Clarke, IEEE Trans. Electron Devices ED‐27, 1896 (1980); https://doi.org/IETDAI
    J. Clarke, in Advances in Superconductivity, B. Deaver, J. Ruvalds, eds., Plenum, New York (1983) p. 13.

  8. 8. For collections of papers on SQUIDS, see the proceedings of the applied‐superconductivity conferences. The last three proceedings are in IEEE Trans. Magn. MAG‐17, no. 1 (1981); https://doi.org/IEMGAQ
    MAG‐19, no. 3 (1983); https://doi.org/IEMGAQ , IEEE Trans. Magn.
    MAG‐21, no. 2 (1985). https://doi.org/IEMGAQ , IEEE Trans. Magn.
    Also see the Proc. Int. Conf. on Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbohm, H. Lübbig, eds., Walter de Gruyter, Berlin (1977), (1980), (1985).

  9. 9. J. C. Jaklevic, J. Lambe, A. H. Silver, J. E. Mercereau, Phys. Rev. Lett. 12, 159 (1964).https://doi.org/PRLTAO

  10. 10. See IBM J. Res. Dev. 24, no. 2 (March 1980).https://doi.org/IBMJAE

  11. 11. C. T. Rogers, R. A. Buhrman, Phys. Rev. Lett. 53, 1272 (1984); https://doi.org/PRLTAO
    R. H. Koch, in Noise in Physical Systems, M. Savelli, G. Leroy, J. P. Nougier, eds., North Holland, New York (1983) p. 377.

  12. 12. C. D. Tesche, K. H. Brown, A. C. Callegari, M. M. Chen, J. H. Greiner, H. C. Jones, M. B. Ketchen, K. K. Kim, A. W. Kleinsasser, H. A. Notarys, G. Proto, R. H. Wang, T. Yogi, Proc. 17th Int. Conf. on Low Temperature Physics, U. Eckern, A. Schmid, W. Weber, H. Wuhl, eds., North Holland, New York (1984), p. 263.

  13. 13. G. J. van Nieuwenhuyzen, V. J. de Waal, Appl. Phys. Lett. 46, 439 (1985).https://doi.org/APPLAB

  14. 14. J. E. Zimmerman, in Superconducting Quantum Interference Devices and Their Applications, H. D. Hahlbohm, H. Lübbig, eds., Walter de Gruyter, Berlin (1980), p. 423;
    W. A. Little, Rev. Sci. Instrum. 55, 661 (1984).https://doi.org/RSINAK

  15. 15. For extensive reviews, see S. J. Williamson, L. Kaufman, J. Magn. Magn. Mater. 22, 129 (1981); https://doi.org/JMMMDC
    S. J. Williamson, G. L. Romani, L. Kaufman, I. Modena, eds., Biomagnetism: An Interdisciplinary Approach, Plenum, New York (1983).

  16. 16. For an elementary review on gravity waves, see S. L. Shapiro, R. F. Stark, S. J. Teukolsky, Am. Sci. 73, 248 (1985).https://doi.org/AMSCAC

  17. 17. G. L. Romani, S. J. Williamson, L. Kaufman, Science 216, 1339 (1982).https://doi.org/SCIEAS

  18. 18. R. P. Giffard, Phys. Rev. A 14, 2478 (1976).https://doi.org/PLRAAN

  19. 19. For a review, see C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).https://doi.org/RMPHAT

More about the Authors

John Clarke. University of California, Berkeley.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1986_03.jpeg

Volume 39, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.