Discover
/
Article

Sonoluminescence

SEP 01, 1994
A simple mechanical system can produce light from sound. In the process energy densities can increase by a factor of 1012, and 50‐picosecond light pulses are synchronized to a few parts in 1011.

DOI: 10.1063/1.881402

Lawrence A. Crum

In 1896 Henri Becquerel discovered that a uranium salt could darken a photographic plate, and from this effect he went on to discover radioactivity. In 1934 H. Frenzel and H. Schultes exposed a photographic plate to acoustic waves generated in a water bath and also observed a darkening of the plate. They attributed that result to luminescence from the sound field—an effect that has come to be known as sonoluminescence. The uminescence they observed did not result from the sound field directly but arose through a process called cavitation, in which voids filled with gas and vapor are generated within the liquid during the tensile portion of the pressure variation. The subsequent collapse of these voids during the compression portion of the acoustic cycle can be extremely violent and represents a remarkable degree of energy concentration—as high as 12 orders of magnitude. This energy concentration results principally from the fact that cavitation‐bubble collapse obeys spherical symmetry, at least until the final stages, when instabilities in the interface may develop. This spherical symmetry is apparently preserved to submicron‐size dimensions in single‐bubble sonoluminescence, resulting in another remarkable phenomenon: Extremely short bursts of light are emitted from the bubble with clock‐like precision.

References

  1. 1. H. Frenzel, H. Schultes, Z. Phys. Chem. 27B, 421 (1934).

  2. 2. B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman, S. J. Putterman, J. Acoust. Soc. Am. 91, 3061 (1992).https://doi.org/JASMAN

  3. 3. D. F. Gaitan, L. A. Crum, in Frontiers of Nonlinear Acoustics, Proc. 12th Int. Symp. on Nonlinear Acoustics, M. Hamilton, D. T. Blackstock, eds., Elsevier, New York (1990), p. 459.
    D. F. Gaitan, L. A. Crum, R. A. Roy, C. C. Church, J. Acoust. Soc. m. 91, 3166 (1992).

  4. 4. L. A. Crum, J. Acoust. Soc. Am. 68, 203 (1980); https://doi.org/JASMAN
    L. A. Crum, 95, 559 (1994).
    R. G. Holt, L. A. Crum, J. Acoust. Soc. Am. 91, 1924 (1992).https://doi.org/JASMAN

  5. 5. V. Kamath, A. Prosperetti, F. N. Egolfopoulos, J. Acoust. Soc. Am. 94, 248 (1993).https://doi.org/JASMAN

  6. 6. R. Lofstedt, B. P. Barber, S. J. Putterman, Phys. Fluids A 5, 2911 (1993).https://doi.org/PFADEB

  7. 7. L. A. Crum, S. Cordry, in Proc. IUTAM Symp. on Bubble Dynamics and Interface Phenomena, J. R. Blake, N. H. Thomas, eds., Kluwer, Dordrecht, The Netherlands, in press.

  8. 8. B. P. Barber, S. J. Putterman, Phys. Rev. Lett. 69, 3839 (1992).https://doi.org/PRLTAO

  9. 9. B. P. Barber, C. C. Wu, R. Lofstedt, P. H. Roberts, S. J. Putterman, Phys. Rev. Lett. 72, 1380 (1994).https://doi.org/PRLTAO

  10. 10. B. P. Barber, S. J. Putterman, Nature 352, 318 (1991).https://doi.org/NATUAS

  11. 11. R. Hiller, S. J. Putterman, B. P. Barber, Phys. Rev. Lett. 69, 1182 (1992). https://doi.org/PRLTAO
    R. Hiller, B. P. Barber, J. Acoust. Soc. Am. 94, 1794 (1993). https://doi.org/JASMAN
    R. Hiller, K. Weninger, S. J. Putterman, B. P. Barber, Science, in press.

  12. 12. R. G. Holt, D. F. Gaitan, A. A. Atchley, J. Holzfuss, Phys. Rev. Lett. 72, 1376 (1994).https://doi.org/PRLTAO

  13. 13. K. S. Suslick, Science 247, 1439 (1990).
    K. S. Suslick, E. B. Flint, M. W. Grinstaff, K. A. Kemper, J. Phys. Chem. 97, 3098 (1993).https://doi.org/JPCHAX

  14. 14. K. J. Taylor, P. D. Jarman, Aust. J. Phys. 23, 319 (1970). https://doi.org/AUJPAS
    P. D. Jarman, J. Acoust. Soc. Am. 32, 1459 (1960).https://doi.org/JASMAN

  15. 15. A. A. Atchley, in Advances in Nonlinear Acoustics, H. Hobaek, ed.. World Scientific, Singapore (1993), p. 36.

  16. 16. A. Prosperetti, L. A. Crum, K. W. Commander, J. Acoust. Soc. Am. 83, 502 (1988). https://doi.org/JASMAN
    W. Lauterborn, J. Acoust. Soc. Am. 59, 283 (1976). https://doi.org/JASMAN
    R. E. Apfel, J. Acoust. Soc. Am. 69, 1624 (1981).https://doi.org/JASMAN

  17. 17. J. Schwinger, Proc. Natl. Acad. Sci. USA 89, 1118, 4091 (1992).

  18. 18. T. Lepoint, F. Mullie, Ultrasonics Sonochem. 1, S13 (1994).
    M. A. Margulis, Ultrasonics 30, 152 (1992).https://doi.org/ULTRA3

  19. 19. C. C. Wu, P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993).https://doi.org/PRLTAO

  20. 20. H. P. Greenspan, A. Nadim, Phys. Fluids A 5, 1065 (1993).https://doi.org/PFADEB

  21. 21. A. Nadim, A. D. Pierce, G. V. H. Sandri, J. Acoust. Soc. Am. (Suppl.) 95, 2938 (1994).

  22. 22. R. J. Zanetti, Chem. Eng. 99, 37 (1992).

  23. 23. K. S. Suslick, S. B. Choe, A. A. Cichowlas, M. W. Grinstaff, Nature 353, 414 (1991).https://doi.org/NATUAS

  24. 24. A. J. Walton, G. T. Reynolds, Adv. Phys. 33, 595 (1984).https://doi.org/ADPHAH

More about the Authors

Lawrence A. Crum. University of Washington, Seattle.

This Content Appeared In
pt-cover_1994_09.jpeg

Volume 47, Number 9

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.