Discover
/
Article

Soft‐X‐Ray Microscopes

AUG 01, 1985
Major developments in sources, optics and detectors for soft x rays promise to help biologists realize the longstanding goal of high‐resolution imaging of biological materials in their natural, even living, state.
Malcolm Howells
Janos Kirz
David Sayre
Günter Schmahl

Biologists have long dreamed of a microscope capable of imaging specimens in their natural state, at molecular or near‐molecular resolution. Physicists have for some years known that the soft‐x‐ray photon has properties that suit it for use as a probe in such microscopy. With the advent of synchrotron radiation sources, and with other technical advances, the difficulties that impeded the development of soft‐x‐ray microscopy have begun to give way, and in 1983 the technique produced the first images ever obtained of a living cell at a near‐molecular resolution of 75 Å.

This article is only available in PDF format

References

  1. 1. The most useful current reference to the subject is G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984).
    This book contains descriptions of the systems in table 1: See D. Rudolph, B. Niemann, G. Schmahl, O. Christ, p. 192;
    P. J. Duke, p. 232;
    H. Rarback, J. M. Kenney, J. Kirz, M. R. Howells, P. Chang, P. J. Coane, R. Feder, P. J. Houzego, D. P. Kern, D. Sayre, p. 203;
    B. Niemann, p. 217;
    P. J. Duke, p. 232;
    E. Spiller, p. 226;
    A. Franks, B. Gale, p. 129;
    F. Polack, S. Lowenthal, p. 251;
    R. Feder, V. Mayne‐Banton, D. Sayre, J. Costa, B. K. Kim, M. G. Baldini, P. G. Cheng, p. 279.
    See also S. Aoki, Y. Sakanayagi in Ultrasoft X‐Ray Microscopy, D. F. Parsuns, ed., Ann. N.Y. Acad. Sci. 342, 158 (1980). The resolution for the Tsukuba instrument cited in table 1 is from a recent personal communication from S. Aoki.https://doi.org/ANYAA9

  2. 2. G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 63;
    P. Guttmann, p. 75;
    J. Thieme, p. 91.

  3. 3. D. P. Kern, P. J. Houzego, P. J. Coane, T. H. P. Chang, J. Vac. Sci. Technol. B1, 1096 (1983);
    D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979); https://doi.org/JVSTAL
    A. G. Michette, M. T. Browne, P. Charalambous, R. E. Burge, M. J. Simpson, P. J. Duke, J. Vac. Sci. Technol. 16, 109 (1979); https://doi.org/JVSTAL
    E. Kratschmer, D. Stephani, H. Beneking in Microcircuit Engineering 83, H. Ahmed, J. R. A. Cleaver, G. A. C. Jones, eds., Academic, New York (1983) p. 15.

  4. 4. G. Schmahl, D. Rudolph, B. Niemann in Scanned Image Microscopy, E. A. Ash, ed., Academic, New York (1980) p. 393;
    W. B. Yun, M. R. Howells, Brookhaven Laboratory Technical Report No. 35628, Brookhaven National Laboratory, Brookhaven, New York (1985).

  5. 5. D. Rudolph, B. Niemann, G. Schmahl in High Resolution Soft X‐Ray Optics, E. Spiller, ed., SPIE Proc. 316, 103 (1981).https://doi.org/PSISDG

  6. 6. H. Wolter, Ann. Phys. 10, 94 and (1952).https://doi.org/ANPYA2

  7. 7. T. W. Barbee Jr, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 144;
    E. Spiller p 226.

  8. 8. R.‐P. Haelbich, W. Staehr, C. Kunz in Ultrasoft X‐Ray Microscopy, D. F. Parsons, ed., Ann. N.Y. Acad. Sci. 342, 148 (1980).https://doi.org/ANYAA9

  9. 9. P. Horowitz, J. A. Howell, Science 178, 608 (1972); https://doi.org/SCIEAS
    P. Horowitz, Ann. N.Y. Acad. Sci. 306, 203 (1978).https://doi.org/ANYAA9

  10. 10. L. Y. Huang, Z. Phys. 149, 225 (1957).https://doi.org/ZEPYAA

  11. 11. R. Feder, V. Banton, D. Sayre, J. L. Costa, M. G. Baldini, B. K. Kim, Science 227, 63 (1985).https://doi.org/SCIEAS

  12. 12. See PHYSICS TODAY, March, p. 17;
    Science 215, 488 (1982); https://doi.org/SCIEAS
    D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, Phys. Rev. Lett. 54, 110 (1985).https://doi.org/PRLTAO

  13. 13. D. J. Nagel, in Ultraviolet and Vacuum Ultraviolet Systems, W. R. Hunter, ed., SPIE Proc. 279, 98 (1981). https://doi.org/PSISDG
    Pulsed radiation sources based on the plasma z‐pinch are commercially available from Maxwell Laboratories in San Diego, Calif., and Physics International Co in San Leandro, Calif. Small sources based on laser‐produced plasmas are available from XMR Inc in Santa Clara, Calif.

  14. 14. J. C. Solem, G. C. Baldwin, Science 218, 229 (1982).https://doi.org/SCIEAS

  15. 15. M. R. Howells, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 318;
    M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, in Science with Soft X‐Rays, F. J. Himpsel, R. W. Klaffky, eds., SPIE Proc. 447, 193 (1983).https://doi.org/PSISDG

  16. 16. S. Aoki, S. Kikuta, Japan. J. App. Phys. 13, 1385 (1974). Aoki informs us that Gabor x‐ray holograms are now being recorded with an undulator at the Photon Factory at Tsukuba.

  17. 17. This possibility was discussed in D. Sayre, R.‐P. Haelbich, J. Kirz, W. B. Yun, in G. Schmahl, D. Rudolph, eds., X‐ray Microscopy, Springer‐Verlag, Berlin (1984) p. 314.

  18. 18. A. Engstrom, Acta Radiol. Suppl. 63 (1946).https://doi.org/ARASA5

  19. 19. J. M. Kenney, C. Jacobsen, J. Kirz, H. Rarback, F. Cinotti, W. Thomlinson, R. Rosser, G. Schidlowsky, J. Microsc. 138, No. 3 (June 1985).https://doi.org/JMICAR

  20. 20. V. E. Cosslett, W. C. Nixon, X‐Ray Microscopy, Cambridge U.P. (1960).

  21. 21. H. König, Z. Physik 129, 483 (1951).https://doi.org/ZEPYAA

  22. 22. P. Kirkpatrick, A. V. Baez, J. Opt. Sci. Am. 38, 766 (1948).

  23. 23. A. V. Baez, J. Opt. Sci. Am. 42, 756 (1952);
    A. V. Baez, 51, 405 (1961).

More about the Authors

Malcolm Howells. Lawrence Berkeley Laboratory.

Janos Kirz. State University of New York, Stony Brook.

David Sayre. IBM Research Center, Yorktown Heights, New York.

Günter Schmahl. University of Göttingen, West Germany.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1985_08.jpeg

Volume 38, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.