Discover
/
Article

Soft‐X‐Ray Microscopes

AUG 01, 1985
Major developments in sources, optics and detectors for soft x rays promise to help biologists realize the longstanding goal of high‐resolution imaging of biological materials in their natural, even living, state.

DOI: 10.1063/1.880983

Malcolm Howells
Janos Kirz
David Sayre
Günter Schmahl

Biologists have long dreamed of a microscope capable of imaging specimens in their natural state, at molecular or near‐molecular resolution. Physicists have for some years known that the soft‐x‐ray photon has properties that suit it for use as a probe in such microscopy. With the advent of synchrotron radiation sources, and with other technical advances, the difficulties that impeded the development of soft‐x‐ray microscopy have begun to give way, and in 1983 the technique produced the first images ever obtained of a living cell at a near‐molecular resolution of 75 Å.

References

  1. 1. The most useful current reference to the subject is G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984).
    This book contains descriptions of the systems in table 1: See D. Rudolph, B. Niemann, G. Schmahl, O. Christ, p. 192;
    P. J. Duke, p. 232;
    H. Rarback, J. M. Kenney, J. Kirz, M. R. Howells, P. Chang, P. J. Coane, R. Feder, P. J. Houzego, D. P. Kern, D. Sayre, p. 203;
    B. Niemann, p. 217;
    P. J. Duke, p. 232;
    E. Spiller, p. 226;
    A. Franks, B. Gale, p. 129;
    F. Polack, S. Lowenthal, p. 251;
    R. Feder, V. Mayne‐Banton, D. Sayre, J. Costa, B. K. Kim, M. G. Baldini, P. G. Cheng, p. 279.
    See also S. Aoki, Y. Sakanayagi in Ultrasoft X‐Ray Microscopy, D. F. Parsuns, ed., Ann. N.Y. Acad. Sci. 342, 158 (1980). The resolution for the Tsukuba instrument cited in table 1 is from a recent personal communication from S. Aoki.https://doi.org/ANYAA9

  2. 2. G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 63;
    P. Guttmann, p. 75;
    J. Thieme, p. 91.

  3. 3. D. P. Kern, P. J. Houzego, P. J. Coane, T. H. P. Chang, J. Vac. Sci. Technol. B1, 1096 (1983);
    D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979); https://doi.org/JVSTAL
    A. G. Michette, M. T. Browne, P. Charalambous, R. E. Burge, M. J. Simpson, P. J. Duke, J. Vac. Sci. Technol. 16, 109 (1979); https://doi.org/JVSTAL
    E. Kratschmer, D. Stephani, H. Beneking in Microcircuit Engineering 83, H. Ahmed, J. R. A. Cleaver, G. A. C. Jones, eds., Academic, New York (1983) p. 15.

  4. 4. G. Schmahl, D. Rudolph, B. Niemann in Scanned Image Microscopy, E. A. Ash, ed., Academic, New York (1980) p. 393;
    W. B. Yun, M. R. Howells, Brookhaven Laboratory Technical Report No. 35628, Brookhaven National Laboratory, Brookhaven, New York (1985).

  5. 5. D. Rudolph, B. Niemann, G. Schmahl in High Resolution Soft X‐Ray Optics, E. Spiller, ed., SPIE Proc. 316, 103 (1981).https://doi.org/PSISDG

  6. 6. H. Wolter, Ann. Phys. 10, 94 and (1952).https://doi.org/ANPYA2

  7. 7. T. W. Barbee Jr, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 144;
    E. Spiller p 226.

  8. 8. R.‐P. Haelbich, W. Staehr, C. Kunz in Ultrasoft X‐Ray Microscopy, D. F. Parsons, ed., Ann. N.Y. Acad. Sci. 342, 148 (1980).https://doi.org/ANYAA9

  9. 9. P. Horowitz, J. A. Howell, Science 178, 608 (1972); https://doi.org/SCIEAS
    P. Horowitz, Ann. N.Y. Acad. Sci. 306, 203 (1978).https://doi.org/ANYAA9

  10. 10. L. Y. Huang, Z. Phys. 149, 225 (1957).https://doi.org/ZEPYAA

  11. 11. R. Feder, V. Banton, D. Sayre, J. L. Costa, M. G. Baldini, B. K. Kim, Science 227, 63 (1985).https://doi.org/SCIEAS

  12. 12. See PHYSICS TODAY, March, p. 17;
    Science 215, 488 (1982); https://doi.org/SCIEAS
    D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, Phys. Rev. Lett. 54, 110 (1985).https://doi.org/PRLTAO

  13. 13. D. J. Nagel, in Ultraviolet and Vacuum Ultraviolet Systems, W. R. Hunter, ed., SPIE Proc. 279, 98 (1981). https://doi.org/PSISDG
    Pulsed radiation sources based on the plasma z‐pinch are commercially available from Maxwell Laboratories in San Diego, Calif., and Physics International Co in San Leandro, Calif. Small sources based on laser‐produced plasmas are available from XMR Inc in Santa Clara, Calif.

  14. 14. J. C. Solem, G. C. Baldwin, Science 218, 229 (1982).https://doi.org/SCIEAS

  15. 15. M. R. Howells, in G. Schmahl, D. Rudolph, eds., X‐Ray Microscopy, Springer‐Verlag, Berlin (1984) p. 318;
    M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, in Science with Soft X‐Rays, F. J. Himpsel, R. W. Klaffky, eds., SPIE Proc. 447, 193 (1983).https://doi.org/PSISDG

  16. 16. S. Aoki, S. Kikuta, Japan. J. App. Phys. 13, 1385 (1974). Aoki informs us that Gabor x‐ray holograms are now being recorded with an undulator at the Photon Factory at Tsukuba.

  17. 17. This possibility was discussed in D. Sayre, R.‐P. Haelbich, J. Kirz, W. B. Yun, in G. Schmahl, D. Rudolph, eds., X‐ray Microscopy, Springer‐Verlag, Berlin (1984) p. 314.

  18. 18. A. Engstrom, Acta Radiol. Suppl. 63 (1946).https://doi.org/ARASA5

  19. 19. J. M. Kenney, C. Jacobsen, J. Kirz, H. Rarback, F. Cinotti, W. Thomlinson, R. Rosser, G. Schidlowsky, J. Microsc. 138, No. 3 (June 1985).https://doi.org/JMICAR

  20. 20. V. E. Cosslett, W. C. Nixon, X‐Ray Microscopy, Cambridge U.P. (1960).

  21. 21. H. König, Z. Physik 129, 483 (1951).https://doi.org/ZEPYAA

  22. 22. P. Kirkpatrick, A. V. Baez, J. Opt. Sci. Am. 38, 766 (1948).

  23. 23. A. V. Baez, J. Opt. Sci. Am. 42, 756 (1952);
    A. V. Baez, 51, 405 (1961).

More about the Authors

Malcolm Howells. Lawrence Berkeley Laboratory.

Janos Kirz. State University of New York, Stony Brook.

David Sayre. IBM Research Center, Yorktown Heights, New York.

Günter Schmahl. University of Göttingen, West Germany.

This Content Appeared In
pt-cover_1985_08.jpeg

Volume 38, Number 8

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.