Discover
/
Article

SLAC: The accelerator

APR 01, 1967
The Stanford two‐mile linac produces up to six beams. The unusually high current and high energy can be doubled by future expansion.
Richard B. Neal

LAST MAY, APPROXIMATELY four years after construction started at the Stanford Linear Accelerator Center, a beam traveled the entire two‐mile length of the accelerator from an injector at the west end to a beam dump at the east end. This machine is distinguished not only by its length and high energy (20 GeV); it also produces high current (30 microamperes), exceeding by a factor of 100 that of any other machine operating with an energy greater than 10 GeV. Moreover the design permits future expansion (from stage I to stage II) that will double both energy and current by adding radiofrequency sources along the length. Details of the design evolution appear in references 1–5.

This article is only available in PDF format

References

  1. 1. R. B. Neal, W. K. H. Panofsky, p. 530 in Proceedings of the International Conference on High Energy Accelerators, vol. 1, (CERN, Geneva, 1956).

  2. 2. R. B. Neal, p. 349 in Proceedings of the International Conference on High Energy Accelerators (CERN, Geneva, 1959).

  3. 3. K. L. Brown, A. L. Eldredge, R. H. Helm, J. H. Jasberg, J. V. Lebacqz, G. A. Loew, R. F. Mozley, R. B. Neal, W. K. H. Panofsky, T. F. Turner, p. 79 in Proceedings of International Conference on High Energy Accelerators (Brookhaven, 1961).

  4. 4. W. K. H. Panofsky, p. 407 in Proceedings of the International Conference on High Energy Accelerators (Dubna, 1963).

  5. 5. J. Ballam, G. A. Loew, R. B. Neal, in Proceedings of the Fifth International Conference on High Energy Accelerators (Frascati, 1965) (to be published).

  6. 6. R. P. Borghi, A. L. Eldredge, G. A. Loew, R. B. Neal, “Design and Fabrication of the Accelerating Structure for the Stanford Two‐Mile Accelerator,” in Advances in Microwaves, vol. 1, Academic Press, New York (1966).

  7. 7. J. V. Lebacqz, The First National Particle Accelerator Conference (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 86 (1965).https://doi.org/IETNAE

  8. 8. C. B. Williams, A. R. Wilmunder, J. Dobson, H. A. Hogg, M. J. Lee, G. A. Loew, p. 233 in Proceedings of the G‐MIT Symposium (IEEE), (Clearwater, Florida, 1965).

  9. 9. R. H. Miller, R. F. Koontz, D. D. Tsang, The First National Particle Accelerator Conference (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 804 (1965).https://doi.org/IETNAE

  10. 10. M. Allen, et al., “Proposal for a High‐Energy Electron‐Positron Colliding‐Beam Storage Ring at the Stanford Linear Accelerator Center,” Stanford, California (revised Sept. 1966).

  11. 11. W. B. Herrmannsfeldt, The First National Particle Accelerator Conference (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 929 (1965).https://doi.org/IETNAE

  12. 12. R. B. Neal, J. Vac. Sci. Technol. 2, 149 (1965); https://doi.org/JVSTAL
    S. R. Conviser, The National Particle Accelerator Conference (Washington, D.C., 1965)
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 699 (1965).https://doi.org/IETNAE

  13. 13. W. R. Herrmannsfeldt, The First National Particle Accelerator Conference (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 9 (1965).https://doi.org/IETNAE

  14. 14. R. E. Taylor, The First National Particle Accelerator Conference, (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 846 (1965).https://doi.org/IETNAE

  15. 15. D. R. Walz, J. Jurow, E. L. Garwin, The First National Particle Accelerator Conference (Washington, D.C., 1965),
    IEEE Trans. Nucl. Sci. NS‐12, no. 3, 867 (1965).https://doi.org/IETNAE

  16. 16. T. R. Jarvis, G. Saxon, M. C. Crowley‐Million, Proc. IEE 112, 1795 (1965).

More about the Authors

Richard B. Neal. SLAC.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1967_04.jpeg

Volume 20, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.