Discover
/
Article

Semiconductor Quantum Heterostructures

OCT 01, 1992
A new closs of materials that can be designed and fabricated with prescribed electronic and photonic properties has opened up a frontier field in semiconductor research.
Leroy L. Chang
Leo Esaki

Junctions between dissimilar semiconductors have long attracted the attention of researchers in solid‐state physics and electronics. The additional degree of freedom provided by the two materials in the semiconductor heterojunction offers opportunities to pursue new phenomena and applications not possible with homogeneous media. A notable example is the heterojunction injection laser, which, because of its ability to operate continuously at room temperature, has had a great technological impact in areas ranging from optical communications to the compact‐disc player.

This article is only available in PDF format

References

  1. 1. For a recent review of both the materials and physics aspects of semiconductor quantum heterostructures, see L. L. Chang, in Highlights in Condensed Matter Physics and Future Prospects, L. Esaki, ed., Plenum, New York (1991), p. 83.

  2. 2. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970).https://doi.org/IBMJAE

  3. 3. L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke, J. Vac. Sci. Technol. 10, 11 (1973).https://doi.org/JVSTAL

  4. 4. L. L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974).https://doi.org/APPLAB

  5. 5. L. Esaki, L. L. Chang, Phys. Rev. Lett. 33, 495 (1974).https://doi.org/PRLTAO

  6. 6. See, for example, F. Capasso, in Physics and Applications of Quantum Wells and Superlattices, E. E. Mendez, K. von Klitzing, eds., Plenum, New York (1987), p. 377.

  7. 7. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Les Ulis, France (1988);
    Halsted, New York (1991).

  8. 8. For a recent review, see L. Eaves, F. W. Sheard, G. A. Toombs, in Band Structure Engineering in Semiconductor Microstructures, R. A. Abram, M. Jaros, eds., Plenum, New York (1989), p. 149.

  9. 9. See, for example, M. Buttiker, in Resonant Tunneling in Semiconductors: Physics and Applications, L. L. Chang, E. E. Mendez, C. Tejedor, eds., Plenum, New York (1991), p. 213.

  10. 10. E. E. Mendez, F. Agullo‐Rueda, J. Luminescence 44, 223 (1989).https://doi.org/JLUMA8

  11. 11. For recent discussions of superlattice transport, see L. Esaki, in Highlights in Condensed Matter Physics and Future Prospects, L. Esaki, ed.. Plenum, New York (1991), p. 55;
    and J. F. Palmier, in Resonant Tunneling in Semiconductors: Physics and Applications, L. L. Chang, E. E. Mendez, C. Tejedor, eds.. Plenum, New York (1991), p. 361.

  12. 12. R. E. Prange, S. M. Girvin, eds.. The Quantum Hall Effect, 2nd ed., Springer‐Verlag, New York (1989).

  13. 13. T. Ando, Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).https://doi.org/JUPSAU

  14. 14. T. P. Smith, Surf Sci. 229, 239 (1990).

  15. 15. D. Heitmann, K. Kern, T. Demel, P. Gambow, K. Ploog, Y. H. Zhang, Surf. Sci. 267, 245 (1992).https://doi.org/SUSCAS

  16. 16. For a review of quantum transport, see C. W. J. Beenakker, H. vanHouton, Solid State Phys. 44, 1 (1991).https://doi.org/SSPHAE

  17. 17. E. S. Koteles, J. Y. Chi, Phys. Rev. B 37, 6332 (1988).https://doi.org/PRBMDO

  18. 18. See, for example, M. Cardona, in Light Scattering in Semiconductor Structures and Superlattices, D. J. Lockwood, J. F. Young, eds., Plenum, New York (1991), p. 19.

  19. 19. See, for example, A. C. Gossard, A. Pinczuk, in Synthetic Modulated Structures, L. L. Chang, B. C. Giessen, eds.. Academic, New York (1985), p. 215.

  20. 20. L. L. Chang, L. Esaki, Surf. Sci. 98, 70 (1980).https://doi.org/SUSCAS

  21. 21. G. Abstreiter, K. Eberl, E. Friess, W. Wegscheider, R. Zachai, J. Crystal Growth 95, 431 (1989).

  22. 22. For a recent review, see L. L. Chang, D. D. Awschalom, M. R. Freeman, L. Vina, in Condensed Systems of Low Dimensionality, J. L. Beeby, ed., Plenum, New York (1991), p. 165.

More about the Authors

Leroy L. Chang. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Leo Esaki. Tsukuba University, Tsukuba, Japan.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_10.jpeg

Volume 45, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.