Semiconductor Quantum Heterostructures
DOI: 10.1063/1.881342
Junctions between dissimilar semiconductors have long attracted the attention of researchers in solid‐state physics and electronics. The additional degree of freedom provided by the two materials in the semiconductor heterojunction offers opportunities to pursue new phenomena and applications not possible with homogeneous media. A notable example is the heterojunction injection laser, which, because of its ability to operate continuously at room temperature, has had a great technological impact in areas ranging from optical communications to the compact‐disc player.
References
1. For a recent review of both the materials and physics aspects of semiconductor quantum heterostructures, see L. L. Chang, in Highlights in Condensed Matter Physics and Future Prospects, L. Esaki, ed., Plenum, New York (1991), p. 83.
2. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970).https://doi.org/IBMJAE
3. L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke, J. Vac. Sci. Technol. 10, 11 (1973).https://doi.org/JVSTAL
4. L. L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974).https://doi.org/APPLAB
5. L. Esaki, L. L. Chang, Phys. Rev. Lett. 33, 495 (1974).https://doi.org/PRLTAO
6. See, for example, F. Capasso, in Physics and Applications of Quantum Wells and Superlattices, E. E. Mendez, K. von Klitzing, eds., Plenum, New York (1987), p. 377.
7. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Les Ulis, France (1988);
Halsted, New York (1991).8. For a recent review, see L. Eaves, F. W. Sheard, G. A. Toombs, in Band Structure Engineering in Semiconductor Microstructures, R. A. Abram, M. Jaros, eds., Plenum, New York (1989), p. 149.
9. See, for example, M. Buttiker, in Resonant Tunneling in Semiconductors: Physics and Applications, L. L. Chang, E. E. Mendez, C. Tejedor, eds., Plenum, New York (1991), p. 213.
10. E. E. Mendez, F. Agullo‐Rueda, J. Luminescence 44, 223 (1989).https://doi.org/JLUMA8
11. For recent discussions of superlattice transport, see L. Esaki, in Highlights in Condensed Matter Physics and Future Prospects, L. Esaki, ed.. Plenum, New York (1991), p. 55;
and J. F. Palmier, in Resonant Tunneling in Semiconductors: Physics and Applications, L. L. Chang, E. E. Mendez, C. Tejedor, eds.. Plenum, New York (1991), p. 361.12. R. E. Prange, S. M. Girvin, eds.. The Quantum Hall Effect, 2nd ed., Springer‐Verlag, New York (1989).
13. T. Ando, Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).https://doi.org/JUPSAU
14. T. P. Smith, Surf Sci. 229, 239 (1990).
15. D. Heitmann, K. Kern, T. Demel, P. Gambow, K. Ploog, Y. H. Zhang, Surf. Sci. 267, 245 (1992).https://doi.org/SUSCAS
16. For a review of quantum transport, see C. W. J. Beenakker, H. vanHouton, Solid State Phys. 44, 1 (1991).https://doi.org/SSPHAE
17. E. S. Koteles, J. Y. Chi, Phys. Rev. B 37, 6332 (1988).https://doi.org/PRBMDO
18. See, for example, M. Cardona, in Light Scattering in Semiconductor Structures and Superlattices, D. J. Lockwood, J. F. Young, eds., Plenum, New York (1991), p. 19.
19. See, for example, A. C. Gossard, A. Pinczuk, in Synthetic Modulated Structures, L. L. Chang, B. C. Giessen, eds.. Academic, New York (1985), p. 215.
20. L. L. Chang, L. Esaki, Surf. Sci. 98, 70 (1980).https://doi.org/SUSCAS
21. G. Abstreiter, K. Eberl, E. Friess, W. Wegscheider, R. Zachai, J. Crystal Growth 95, 431 (1989).
22. For a recent review, see L. L. Chang, D. D. Awschalom, M. R. Freeman, L. Vina, in Condensed Systems of Low Dimensionality, J. L. Beeby, ed., Plenum, New York (1991), p. 165.
More about the Authors
Leroy L. Chang. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
Leo Esaki. Tsukuba University, Tsukuba, Japan.