Discover
/
Article

Semiconductor lasers

FEB 01, 1965
Robert H. Rediker

Since the announcement of the GaAs diode laser in November 1962, laser action has been achieved in diodes of a variety of III–V and IV–VI direct‐gap semiconductors. The wavelength of the emitted radiation varies over the range from 6300 Å for the III–V mixed semiconductor Ga(AsxP1−x) to 85 000 Å for the IV–VI semiconductor PbSe. The semiconductor diode laser has the advantages that its size is small, that it converts electric power directly into coherent light, and that its output can be modulated by simply modulating the diode current. Figure 1 shows an artist’s sketch of a GaAs diode laser in a pill‐type package. Such a laser, when operated between 4° and 20°K, has emitted up to 6 W of continuous coherent radiation at close to fifty percent power efficiency, and the radiation has been modulated at frequencies up to 11 Gc. At room temperature such a laser can be used on a pulse basis and 20 W of coherent radiation can be emitted in 50 nsec pulses. When operated continuously at currents not too high above threshold, GaAs lasers can operate stably in one mode of the Fabry‐Perot cavity formed by the cleaved face, shown in Fig. 1, and the parallel face on the opposite end of the laser. The width of such a cavity mode has been measured to be less than 50 Mc/sec or less than 1.5 parts in 107 of the output frequency.

This article is only available in PDF format

References

  1. 1. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. F. Soltys, and R. O. Carlson, Phys. Rev. Letters 9, 366 (1962); https://doi.org/PRLTAO
    M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, Appl. Phys. Letters 1, 62 (1962); https://doi.org/APPLAB
    T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger, Appl. Phys. Letters 1, 91 (1962).https://doi.org/APPLAB

  2. 2. Ga(AsxP1−:r): N. Holonyak, Jr., and S. F. Bevaqua, Appl. Phys. Letters 1, 82 (1962); https://doi.org/APPLAB
    InAs: I. Melngailis, Appl. Phys. Letters 2, 176 (1963); https://doi.org/APPLAB
    InP: K. Weiser and R. S. Levitt, Appl. Phys. Letters 2, 178 (1963); https://doi.org/APPLAB
    (InxGa1−x)As: I. Melngailis, A. J. Strauss, and R. H. Rediker, Proc. IEEE 51, 1154 (1963); https://doi.org/IEEPAD
    InSb: R. J. Phelan, Jr., A. R. Calawa, R. H. Rediker, R. J. Keyes, and B. Lax, Appl. Phys. Letters 3, 143 (1963); https://doi.org/APPLAB
    C. Benoit á la Guillaume and P. Lavallard, Solid State Commun. 1, 148 (1963); https://doi.org/SSCOA4
    In(AsxP1−x): F. B. Alexander, V. R. Bird, D. R. Carpenter, G. W. Manley, P. S. McDermott, J. R. Peloke, H. F. Quinn, R. J. Riley, and L. R. Yetter, Appl. Phys. Letters 4, 13 (1964); https://doi.org/APPLAB
    PbTe: J. F. Butler, A. R. Calawa, R. J. Phelan, Jr., T. C. Harman, A. J. Strauss, and R. H. Rediker, Appl. Phys. Letters 5, 75 (1964); https://doi.org/APPLAB
    PbSe: J. F. Butler, A. R. Calawa, R. J. Phelan, Jr., T. C. Harman, A. J. Strauss, and R. H. Rediker, Solid State Commun. 2, 301 (1964).https://doi.org/SSCOA4

  3. 3. T. M. Quist, private communication.

  4. 4. B. S. Goldstein and R. M. Weigand, Proc. IEEE, to be published.

  5. 5. C. C. Gallagher, P. C. Tandy, B. S. Goldstein, J. D. Welch, Proc. IEEE 52, 717 (1964).https://doi.org/IEEPAD

  6. 6. J. A. Armstrong and A. W. Smith, Appl. Phys. Letters 4, 196 (1964).https://doi.org/APPLAB

  7. 7. G. F. Dalrymple, B. S. Goldstein, and T. M. Quist, Proc. IEEE 52, (1964).https://doi.org/IEEPAD

  8. 8. M. G. A. Bernard and G. Duraffourg, Physica Status Solidi 1, 699 (1961).https://doi.org/PHSSAK

  9. 9. A. L. McWhorter, Solid‐State Electronics 6, 417 (1963).https://doi.org/SSELA5

  10. 10. G. L. Lasher and F. Stern, Phys. Rev. 133, A553 (1964).https://doi.org/PHRVAO

  11. 11. M. Pilkuhn and H. Rupprecht, Proc. IEEE 51, 1243 (1963); https://doi.org/IEEPAD
    M. Pilkuhn, H. Rupprecht, and S. Blum, Solid‐State Electron. 5, (1964).https://doi.org/SSELA5

  12. 12. G. Diemer and B. Bolger, Physica 29, 600 (1963); https://doi.org/PHYSAG
    F. Stern, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  13. 13. A. Yariv and R. C. C. Leite, Appl. Phys. Letters 2, 55 (1963).https://doi.org/APPLAB

  14. 14. G. E. Fenner and J. D. Kingsley, J. Appl. Phys. 34, 3204 (1963).https://doi.org/JAPIAU

  15. 15. W. P. Dumke, Phys. Rev. 127, 1559 (1962).https://doi.org/PHRVAO

  16. 16. R. J. Phelan, Jr., and R. H. Rediker, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  17. 17. L. B. Griffiths, A. L. Mlavsky, G. Rupprecht, A. J. Rosenberg, P. H. Smakula, and M. A. Wright, Proc. IEEE 51, 1374 (1963).https://doi.org/IEEPAD

  18. 18. R. N. Hall, Proc. IEEE 52, 91 (1964).https://doi.org/IEEPAD

  19. 19. H. J. Zeiger, J. Appl. Phys. 35, 1657 (1964).https://doi.org/JAPIAU

  20. 20. D. K. Wilson, Appl. Phys. Letters 3, 127 (1963).https://doi.org/APPLAB

  21. 21. I. Melngailis, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  22. 22. R. J. Phelan, Jr., A. R. Calawa, R. H. Rediker, R. J. Keyes, and B. Lax, Appl. Phys. Letters 3, 143 (1963).https://doi.org/APPLAB

  23. 23. J. C. Sarace, R. H. Kaiser, J. M. Whelan, post‐deadline paper, APS Meeting, Washington, D.C., 27–30 April 1964.

  24. 24. W. P. Dumke, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  25. 25. V. S. Bagaev, Y. N. Berozashvili, B. M. Vul, E. I. Zavaritskaya, L. V. Keldysh, and A. P. Shotov, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  26. 26. I. Melngailis and R. H. Rediker, Appl. Phys. Letters 2, 202 (1963).https://doi.org/APPLAB

  27. 27. M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Letters 11, 152 (1963).https://doi.org/PRLTAO

  28. 28. G. C. Dousmanis, H. Nelson, and D. L. Staebler, to be published.

  29. 29. I. Melngailis, R. J. Phelan, Jr., and R. H. Rediker, Appl. Phys. Letters 5, 89 (1964).https://doi.org/APPLAB

  30. 30. C. Benoit à la Guillaume and J. M. DeBever, Symp. Radiative Recombination in Semiconductors, Paris, July 27‐28, 1964.

  31. 31. C. E. Hurwitz and R. J. Keyes, Appl. Phys. Letters 5, 139 (1964).https://doi.org/APPLAB

  32. 32. C. Benoit à la Guillaume and J. M. DeBever, Compt. Rend., 259, 2200 (1964).https://doi.org/COREAF

More about the Authors

Robert H. Rediker. Massachusetts Institute of Technology's Lincoln Laboratory.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1965_02.jpeg

Volume 18, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.