Discover
/
Article

Semiconductor lasers

FEB 01, 1965

DOI: 10.1063/1.3047183

Robert H. Rediker

Since the announcement of the GaAs diode laser in November 1962, laser action has been achieved in diodes of a variety of III–V and IV–VI direct‐gap semiconductors. The wavelength of the emitted radiation varies over the range from 6300 Å for the III–V mixed semiconductor Ga(AsxP1−x) to 85 000 Å for the IV–VI semiconductor PbSe. The semiconductor diode laser has the advantages that its size is small, that it converts electric power directly into coherent light, and that its output can be modulated by simply modulating the diode current. Figure 1 shows an artist’s sketch of a GaAs diode laser in a pill‐type package. Such a laser, when operated between 4° and 20°K, has emitted up to 6 W of continuous coherent radiation at close to fifty percent power efficiency, and the radiation has been modulated at frequencies up to 11 Gc. At room temperature such a laser can be used on a pulse basis and 20 W of coherent radiation can be emitted in 50 nsec pulses. When operated continuously at currents not too high above threshold, GaAs lasers can operate stably in one mode of the Fabry‐Perot cavity formed by the cleaved face, shown in Fig. 1, and the parallel face on the opposite end of the laser. The width of such a cavity mode has been measured to be less than 50 Mc/sec or less than 1.5 parts in 107 of the output frequency.

References

  1. 1. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. F. Soltys, and R. O. Carlson, Phys. Rev. Letters 9, 366 (1962); https://doi.org/PRLTAO
    M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, Appl. Phys. Letters 1, 62 (1962); https://doi.org/APPLAB
    T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeiger, Appl. Phys. Letters 1, 91 (1962).https://doi.org/APPLAB

  2. 2. Ga(AsxP1−:r): N. Holonyak, Jr., and S. F. Bevaqua, Appl. Phys. Letters 1, 82 (1962); https://doi.org/APPLAB
    InAs: I. Melngailis, Appl. Phys. Letters 2, 176 (1963); https://doi.org/APPLAB
    InP: K. Weiser and R. S. Levitt, Appl. Phys. Letters 2, 178 (1963); https://doi.org/APPLAB
    (InxGa1−x)As: I. Melngailis, A. J. Strauss, and R. H. Rediker, Proc. IEEE 51, 1154 (1963); https://doi.org/IEEPAD
    InSb: R. J. Phelan, Jr., A. R. Calawa, R. H. Rediker, R. J. Keyes, and B. Lax, Appl. Phys. Letters 3, 143 (1963); https://doi.org/APPLAB
    C. Benoit á la Guillaume and P. Lavallard, Solid State Commun. 1, 148 (1963); https://doi.org/SSCOA4
    In(AsxP1−x): F. B. Alexander, V. R. Bird, D. R. Carpenter, G. W. Manley, P. S. McDermott, J. R. Peloke, H. F. Quinn, R. J. Riley, and L. R. Yetter, Appl. Phys. Letters 4, 13 (1964); https://doi.org/APPLAB
    PbTe: J. F. Butler, A. R. Calawa, R. J. Phelan, Jr., T. C. Harman, A. J. Strauss, and R. H. Rediker, Appl. Phys. Letters 5, 75 (1964); https://doi.org/APPLAB
    PbSe: J. F. Butler, A. R. Calawa, R. J. Phelan, Jr., T. C. Harman, A. J. Strauss, and R. H. Rediker, Solid State Commun. 2, 301 (1964).https://doi.org/SSCOA4

  3. 3. T. M. Quist, private communication.

  4. 4. B. S. Goldstein and R. M. Weigand, Proc. IEEE, to be published.

  5. 5. C. C. Gallagher, P. C. Tandy, B. S. Goldstein, J. D. Welch, Proc. IEEE 52, 717 (1964).https://doi.org/IEEPAD

  6. 6. J. A. Armstrong and A. W. Smith, Appl. Phys. Letters 4, 196 (1964).https://doi.org/APPLAB

  7. 7. G. F. Dalrymple, B. S. Goldstein, and T. M. Quist, Proc. IEEE 52, (1964).https://doi.org/IEEPAD

  8. 8. M. G. A. Bernard and G. Duraffourg, Physica Status Solidi 1, 699 (1961).https://doi.org/PHSSAK

  9. 9. A. L. McWhorter, Solid‐State Electronics 6, 417 (1963).https://doi.org/SSELA5

  10. 10. G. L. Lasher and F. Stern, Phys. Rev. 133, A553 (1964).https://doi.org/PHRVAO

  11. 11. M. Pilkuhn and H. Rupprecht, Proc. IEEE 51, 1243 (1963); https://doi.org/IEEPAD
    M. Pilkuhn, H. Rupprecht, and S. Blum, Solid‐State Electron. 5, (1964).https://doi.org/SSELA5

  12. 12. G. Diemer and B. Bolger, Physica 29, 600 (1963); https://doi.org/PHYSAG
    F. Stern, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  13. 13. A. Yariv and R. C. C. Leite, Appl. Phys. Letters 2, 55 (1963).https://doi.org/APPLAB

  14. 14. G. E. Fenner and J. D. Kingsley, J. Appl. Phys. 34, 3204 (1963).https://doi.org/JAPIAU

  15. 15. W. P. Dumke, Phys. Rev. 127, 1559 (1962).https://doi.org/PHRVAO

  16. 16. R. J. Phelan, Jr., and R. H. Rediker, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  17. 17. L. B. Griffiths, A. L. Mlavsky, G. Rupprecht, A. J. Rosenberg, P. H. Smakula, and M. A. Wright, Proc. IEEE 51, 1374 (1963).https://doi.org/IEEPAD

  18. 18. R. N. Hall, Proc. IEEE 52, 91 (1964).https://doi.org/IEEPAD

  19. 19. H. J. Zeiger, J. Appl. Phys. 35, 1657 (1964).https://doi.org/JAPIAU

  20. 20. D. K. Wilson, Appl. Phys. Letters 3, 127 (1963).https://doi.org/APPLAB

  21. 21. I. Melngailis, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  22. 22. R. J. Phelan, Jr., A. R. Calawa, R. H. Rediker, R. J. Keyes, and B. Lax, Appl. Phys. Letters 3, 143 (1963).https://doi.org/APPLAB

  23. 23. J. C. Sarace, R. H. Kaiser, J. M. Whelan, post‐deadline paper, APS Meeting, Washington, D.C., 27–30 April 1964.

  24. 24. W. P. Dumke, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  25. 25. V. S. Bagaev, Y. N. Berozashvili, B. M. Vul, E. I. Zavaritskaya, L. V. Keldysh, and A. P. Shotov, Symp. Radiative Recombination in Semiconductors, Paris, July 27–28, 1964.

  26. 26. I. Melngailis and R. H. Rediker, Appl. Phys. Letters 2, 202 (1963).https://doi.org/APPLAB

  27. 27. M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Letters 11, 152 (1963).https://doi.org/PRLTAO

  28. 28. G. C. Dousmanis, H. Nelson, and D. L. Staebler, to be published.

  29. 29. I. Melngailis, R. J. Phelan, Jr., and R. H. Rediker, Appl. Phys. Letters 5, 89 (1964).https://doi.org/APPLAB

  30. 30. C. Benoit à la Guillaume and J. M. DeBever, Symp. Radiative Recombination in Semiconductors, Paris, July 27‐28, 1964.

  31. 31. C. E. Hurwitz and R. J. Keyes, Appl. Phys. Letters 5, 139 (1964).https://doi.org/APPLAB

  32. 32. C. Benoit à la Guillaume and J. M. DeBever, Compt. Rend., 259, 2200 (1964).https://doi.org/COREAF

More about the Authors

Robert H. Rediker. Massachusetts Institute of Technology's Lincoln Laboratory.

This Content Appeared In
pt-cover_1965_02.jpeg

Volume 18, Number 2

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.