Discover
/
Article

Resonant Ultrasound Spectroscopy

JAN 01, 1996
With a means of measuring a sample’s natural resonance frequencies and a desktop computer, one can use resonant ultrasound spectroscopy to determine the elastic constants of a broad range of crystalline and noncrystalline materials.
Julian Maynard

When a new crystalline material is discovered, one of the first fundamental properties to be determined is the atomic structure, defined by the minimum in the free energy with respect to the positions of the atoms. Another fundamental characteristic of interest is the curvature of the free energy in the vicinity of the minimum, and this would be manifest in the elastic constants for the material. As derivatives of the free energy, elastic constants are closely connected to thermodynamic properties of the material. They can be related to the specific heat, the Debye temperature and the Gruneisen parameter (which relates the thermal expansion coefficient to the specific heat at constant volume), and they can be used to check theoretical models. Extensive quantitative connections among thermodynamic properties can be made if the elastic constants are known as functions of temperature and pressure. The damping of elastic waves provides information on anharmonicity and on coupling with electrons and other relaxation mechanisms. The elastic properties are perhaps most valuable as probes of phase transitions, such as superconductivity transitions. Clearly precise and accurate measurements of elastic constants furnish significant information about materials.

This article is only available in PDF format

References

  1. 1. A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Cambridge U.P. Cambridge, UK (1927).

  2. 2. J. M. Ide, Rev. Sci. Instrum. 6, 296 (1935).https://doi.org/RSINAK

  3. 3. D. B. Fraser, R. C. LeCraw, Rev. Sci. Instrum. 35, 1113 (1964).https://doi.org/RSINAK

  4. 4. H. Ekstein, T. Schiffman, J. Appl. Phys. 27, 405 (1956).https://doi.org/JAPIAU

  5. 5. H. H. DemarestJr, J. Acoust. Soc. Am. 49, 768 (1971).https://doi.org/JASMAN

  6. 6. E. Schreiber, O. L. Anderson, N. Soga, N. Warren, C. Sholtz, Science 167, 732 (1970). https://doi.org/SCIEAS
    E. Schreiber, O. L. Anderson, Science 168, 1579 (1970).https://doi.org/SCIEAS

  7. 7. I. Ohno, J. Phys. Earth 24, 355 (1976).https://doi.org/JPHEAF

  8. 8. A. Migliori et al., Phys. Rev. B 41, 2098 (1990).https://doi.org/PRBMDO

  9. 9. W. M. Visscher, A. Migliori, T. M. Bell, R. A. Reinert, J. Acoust. Soc. Am. 90, 2154 (1991).https://doi.org/JASMAN

  10. 10. J. D. Maynard, J. Acoust. Soc. Am. 91, 1754 (1992).https://doi.org/JASMAN

  11. 11. A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, Ming Lei, Z. Fisk, R. G. Leisure, Physica B 183, 1 (1993).https://doi.org/PHYBE3

  12. 12. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge U.P., Cambridge, UK (1986).

  13. 13. T. Goto, O. L. Anderson, Rev. Sci. Instrum. 59, 1405 (1988).https://doi.org/RSINAK

  14. 14. V.‐T. Kuokkala, R. B. Schwarz, Rev. Sci. Instrum. 63, 3136 (1992).https://doi.org/RSINAK

  15. 15. A. Migliori, W. M. Visscher, S. Wong, S. E. Brown, I. Tanaka, H. Kojima, P. B. Allen, Phys. Rev. Lett. 64, 2458 (1990).https://doi.org/PRLTAO

  16. 16. F. Willis, R. G. Leisure, I. Jacob, Phys. Rev. B 50, 13792 (1994).https://doi.org/PRBMDO

  17. 17. P. S. Spoor, J. D. Maynard, A. R. Kortan, Phys. Rev. Lett. 75, 3462 (1995).https://doi.org/PRLTAO

More about the Authors

Julian Maynard. Pennsylvania State, University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1996_01.jpeg

Volume 49, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.