Discover
/
Article

Relativistic Heavy‐Ion Physics Without Nuclear Contact

MAR 01, 1994
The large electromagnetic field generated by a fast heavy nucleus allows investigation of new electromagnetic processes not accessible with real photons.
Carlos Bertulani
Gerhard Baur

An increasing number of physicists are investigating nuclear collisions at relativistic energies. (See figure 1.) Accelerators completely devoted to the study of these collisions (such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory) are under construction. So are hadron colliders (such as the Large Hadron Collider at CERN), which can also be used to accelerate heavy ions. The aim of these projects is to study what happens to nuclear matter at high pressures and temperatures. The expectation is that such experiments will access information that can test important predictions of quantum chromodynamics—for example, a nuclear matter transition from a mixture of quarks and gluons to hadrons, as occurred in the first moments of the universe according to the Big Bang theory.

This article is only available in PDF format

References

  1. 1. H. R. Schmidt, J. Schukraft, J. Phys. G. 19, 1705 (1993).

  2. 2. T. D. Lee, Nucl. Phys. A 538, 3c (1992).

  3. 3. C. A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988).https://doi.org/PRPLCM

  4. 4. E. Fermi, Z. Phys. 29, 315 (1924). https://doi.org/ZEPYAA
    C. F. vonWeizsacker, Z. Phys. 88, 612 (1934). https://doi.org/ZEPYAA
    E. J. Williams, Phys. Rev. 45, 729 (1934).https://doi.org/PHRVAO

  5. 5. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).

  6. 6. A. Winther, K. Alder, Nucl. Phys. A 319, 518 (1979).https://doi.org/NUPABL

  7. 7. W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984).https://doi.org/RMPHAT

  8. 8. G. Baur, C. A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986).https://doi.org/NUPABL

  9. 9. T. Motobayashi, T. Takei, S. Kox, C. Perrin, F. Merchez, D. Rebreyend, K. Ieki, H. Murakami, Y. Ando, N. M. Iwasa, M. Kurokawa, S. Shirato, J. Ruanlpar;Gen), T. Ichihara, T. Kubo, N. Inabe, A. Goto, S. Kubono, S. Shimoura, M. Ishihara, Phys. Lett. B 264, 259 (1991).https://doi.org/PYLBAJ

  10. 10. J. Kiener, H. J. Gils, H. Rebel, S. Zagromski, G. Gsottschneider, N. Heide, H. Jelitto, J. Wentz, G. Baur, Phys. Rev. C 44, 2195 (1991).

  11. 11. K. Ieki, D. Sackett, A. Galonsky, C. A. Bertulani, J. J. Kruse, W. G. Lynch, D. J. Morrisey, N. A. Orr, H. Schulz, B. M. Sherrill, A. Sustich, J. A. Winger, F. Deak, A. Horvath, A. Kiss, Z. Seres, J. J. Kolata, R. E. Warner, D. L. Humphrey, Phys. Rev. Lett. 70, 730 (1993).https://doi.org/PRLTAO

  12. 12. D. Lissauer et al., proposal for BNL‐AGS experiment 814 (accepted October 1985), available at Brookhaven Nat. Lab. library.

  13. 13. G. Baur, C. A. Bertulani, Phys. Lett. B 174, 23 (1986).https://doi.org/PYLBAJ

  14. 14. R. Schmidt, Th. Blaich, Th. W. Elze, H. Emling, H. Freiesleben, K. Grimm, W. Henning, R. Holzmann, J. G. Keller, H. linger, R. Kulessa, J. V. Kratz, D. Lambrecht, J. S. Lange, Y. Leifels, E. Lubkiewicz, E. F. Moore, E. Wajda, W. Prokopowicz, Ch. Schutter, H. Spies, K. Stelzer, J. Stroth, W. Walus, H. J. Wollersheim, M. Zinser, E. Zude, Phys. Rev. Lett. 70, 1767 (1993).https://doi.org/PRLTAO

  15. 15. J. Ritman, F.‐D. Berg, W. Kuhn, V. Metag, R. Novotny, N. Notheisen, P. Paul, M. Pfeiffer, O. Schwalb, H. Lohner, L. Venema, A. Gobbi, N. Herrmann, K. D. Hildenbrand, J. Mosner, R. S. Simon, K. Teh, J. P. Wessels, T. Wienold, Phys. Rev. Lett. 70, 533 (1993).https://doi.org/PRLTAO

  16. 16. F. Dydak, F. L. Navarria, O. E. Overseth, P. Steffen, J. Steinberger, H. Wahl, E. G. Williams, F. Eisele, C. Geweniger, K. leinknecht, H. Taureg, G. Zech, Nucl. Phys. B 118, 1 (1977).https://doi.org/NUPBBO

  17. 17. P. C. Petersen, A. Beretvas, T. Devlin, K. B. Luk, G. B. Thomson, R. Whitman, R. Handler, B. Lundberg, L. Pondrom, M. Sheaff, C. Wilkinson, P. Border, J. Dworkin, O. E. Overseth, R. Rameika, G. Valenti, K. Heller, C. James, Phys. Rev. Lett. 57, 949 (1986).https://doi.org/PRLTAO

  18. 18. G. Baur, C. A. Bertulani, Z. Phys. A 330, 77 (1988).https://doi.org/ZAANEE

  19. 19. P. Giubelino, in Proc. Conf. Particle Production in Highly Excited Matter, H. H. Gutbrod, J. Rafelski, eds., Plenum, New York (1993), p. 117.

  20. 20. K. J. Abraham, M. Drees, R. Laterveer, E. Papageorgiu, A. Schäfer, G. Soff, J. Vermaseren, D. Zeppenfeld, in Proc. ECFA LHC Workshop, vol. II, G. Jarlskog, D. Rein, eds., publ. RD/806‐2500, CERN Service d’Information Scientifique, Geneva (February 1991), p. 1224.

More about the authors

Carlos Bertulani, Federal University Janeiro, Brazil.

Gerhard Baur, University of Basel, Switzerland.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1994_03.jpeg

Volume 47, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.