Discover
/
Article

Reflections on Early Work on ‘Big Bang’ Cosmology

AUG 01, 1988
The standard model of the universe’s development—the hot Big Bang—is successful in accounting for the fossil cosmic background radiation and the high, uniform cosmic abundance of helium.
Ralph A. Alpher
Robert Herman

Primordial nucleosynthesis of the lightest elements in the early universe and stellar nucleosynthesis of the heavier elements are by now both reasonably well understood. The classic paper on stellar nucleosynthesis of elements heavier than helium was published in 1957 by Margaret Burbidge, Geoffrey Burbidge, William Fowler and Fred Hoyle, and that on light‐element primordial nucleosynthesis in 1967 by Robert V. Wagoner, Fowler and Hoyle. The physical conditions required for primordial element‐building also provide useful insights into—and constraints on—the allowable number, type and degeneracy of neutrinos, the number and properties of weakly interacting particles, the mean density of luminous matter, and the entropy per baryon, or photon‐to‐baryon ratio. For many years that ratio was the one “free” parameter in the canonical Big Bang model, although we, with George Gamow, and others had long since suggested that it should not be considered free, but should be explained as a natural consequence of the physics of the very early universe.

This article is only available in PDF format

References

  1. 1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957). https://doi.org/RMPHAT
    R. V. Wagoner, W. A. Fowler, F. Hoyle, Astrophys. J. 148, 3 (1967).https://doi.org/ASJOAB

  2. 2. R. Alpher, G. Gamow, R. Herman, Proc. Natl. Acad. Sci. USA 58, 2179 (1967).https://doi.org/PNASA6

  3. 3. G. Gamow, Creation of the Universe, Viking, New York (1952).
    P. J. E. Peebles, Physical Cosmology, Princeton U.P., Princeton, N.J. (1971).
    F. Reines, ed., Cosmology, Fusion and Other Matters: George Gamow Memorial Volume, Colorado Assoc. U.P., Boulder (1972).
    S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).
    S. Weinberg, The First Three Minutes, Basic Books, New York (1977; second edition, 1988).
    E. R. Harrison, Cosmology, Cambridge U.P., New York (1981).
    J. Bernstein, G. Feinberg, eds., Cosmological Constants: Papers in Modern Cosmology, Columbia U.P., New York (1986).

  4. 4. A. A. Penzias, R. W. Wilson, Astrophys. J. 142, 419 (1965). https://doi.org/ASJOAB
    R. H. Dicke, P. J. E. Peebles, P. G. Roll, D. T. Wilkinson, Astrophys. J. 142, 414 (1965).https://doi.org/ASJOAB

  5. 5. R. Alpher, Phys. Rev. 74, 1577 (1948).https://doi.org/PHRVAO

  6. 6. F. Hoyle, The Nature of the Universe, Harper, New York (1950).

  7. 7. R. Alpher, R. Herman, Nature 162, 774 (1948).https://doi.org/NATUAS

  8. 8. R. Alpher, R. Herman, G. Gamow, Phys. Rev. 74, 1198 (1948).https://doi.org/PHRVAO

  9. 9. R. Alpher, R. Herman, Phys. Rev. 74, 1737 (1948).https://doi.org/PHRVAO

  10. 10. R. Alpher, R. Herman, Rev. Mod. Phys. 22, 153 (1950).https://doi.org/RMPHAT

  11. 11. G. Gamow, Ohio J. Sci. 35, 406 (1935).https://doi.org/OJSCA9

  12. 12. G. Gamow, J. Wash. Acad. Sci. 32, 353 (1942).https://doi.org/JWASA3

  13. 13. G. Gamow, Phys. Rev. 70, 572 (1946).https://doi.org/PHRVAO

  14. 14. R. Alpher, H. A. Bethe, G. Gamow, Phys. Rev. 73, 803 (1948).https://doi.org/PHRVAO

  15. 15. G. Gamow, Phys. Rev. 74, 505 (1948).https://doi.org/PHRVAO

  16. 16. G. Gamow, Nature 162, 680 (1948).https://doi.org/NATUAS

  17. 17. D. T. Wilkinson, P. J. E. Peebles, in Serendipitous Discoveries in Radio Astronomy, K. Kellermann, B. Sheets, eds., Natl. Radio Astronomy Observatory, Green Bank, W. Va. (1983).

  18. 18. H. A. Bethe, Elementary Nuclear Theory, Wiley, New York (1947).

  19. 19. R. Alpher, R. Herman, Phys. Rev. 75, 1089 (1949); https://doi.org/PHRVAO
    R. Alpher, R. Herman, 84, 60 (1951).https://doi.org/PHRVAO , Phys. Rev.

  20. 20. R. Alpher, R. Herman, Proc. Am. Philos. Soc. 119, 325 (1975).https://doi.org/PAPCAA

  21. 21. F. Hoyle, R. J. Tayler, Nature 203, 1108 (1964).https://doi.org/NATUAS

  22. 22. J. S. Smart, Phys. Rev. 74, 1882 (1948); https://doi.org/PHRVAO
    J. S. Smart, 75, 1379 (1949).https://doi.org/PHRVAO , Phys. Rev.

  23. 23. J. H. Applegate, C. J. Hogan, R. J. Scherrer, Phys. Rev. D 35, 1151 (1987).https://doi.org/PRVDAQ

  24. 24. C. Hayashi, Prog. Theor. Phys. (Japan) 5, 224 (1950).

  25. 25. R. Alpher, J. W. Follin, R. Herman, Phys. Rev. 92, 1347 (1953).https://doi.org/PHRVAO

  26. 26. R. Alpher, J. W. Follin, R. Herman, Phys. Rev. A 91, 479 (1953).
    J. W. Follin, R. Alpher, R. Herman, Bull. Am. Phys. Soc. Ser. II 4, 476 (1959);
    J. W. Follin, R. Alpher, R. Herman, 5, 287 (1960).

  27. 27. R. Alpher, R. Herman, Science 128, 904 (1958).https://doi.org/SCIEAS

  28. 28. R. A. Matzner, Astrophys. J. 154, 1123 (1968).https://doi.org/ASJOAB

  29. 29. L. A. Rawley, J. H. Taylor, M. M. Davis, D. W. Allan, Science 238, 761 (1987).https://doi.org/SCIEAS

  30. 30. J. R. Gott, J. E. Gunn, D. N. Schramm, B. M. Tinsley, Astrophys. J. 194, 543 (1974).https://doi.org/ASJOAB

  31. 31. R. V. Wagoner, Astrophys. J. 179, 343 (1973).https://doi.org/ASJOAB

  32. 32. G. Gamow, Mat.‐Fys. Medd. 27 (10), 1 (1953);
    G. Gamow, Vistas Astron. 2, 1726 (1956).https://doi.org/VASTA6

  33. 33. A. G. Doroshkevich, I. D. Novikov, Sov. Phys. Dokl. 9, 111 (1964).https://doi.org/SPHDA9

  34. 34. G. Gamow, Rev. Mod. Phys. 21, 367 (1949).https://doi.org/RMPHAT

  35. 35. W. S. Adams, Astrophys. J. 93, 11 (1941). https://doi.org/ASJOAB
    A. McKellar, Pub. Dom. Astrophys. Obs. Victoria B. C. Can. 7, 251 (1941).

More about the Authors

Ralph A. Alpher. Union College.

Robert Herman. University of Texas, Austin.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1988_08.jpeg

Volume 41, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.