Quench echoes
DOI: 10.1063/1.2915313
When we try to understand atomic motion in amorphous solids, we face a complicated problem in classical mechanics. What is the relationship between the motion of one atom and that of every other? Without a periodic crystal lattice to simplify the calculations, we must look for other properties that make things tractable. A phenomenon recently observed in computer models of many‐body systems may give us such a simplification, at least in the calculation of a number of dynamical properties of glassy solids. This phenomenon, the “quench echo,” appears as a brief but dramatic drop in the temperature of a theoretical solid sometime after it has experienced two abrupt quenches of its kinetic energy, as we will see later in detail.
References
1. For a general review of molecular dynamics simulations, see R. W. Hockney, J. W. Eastwood, Computer Simulations Using Particles, McGraw‐Hill, New York (1981).
2. A. Rahman, M. J. Mandell, J. P. McTague, J. Chem. Phys. 64, 1564 (1976); https://doi.org/JCPSA6
C. S. Hsu, A. Rahman, J. Chem. Phys. 71, 4974 (1979).https://doi.org/JCPSA63. G. S. Grest, S. R. Nagel, A. Rahman, Solid State Commun. 36, 875 (1980).https://doi.org/SSCOA4
4. G. S. Grest, S. R. Nagel, A. Rahman, T. A. WittenJr., J. Chem. Phys. 74, 3532 (1981).https://doi.org/JCPSA6
5. G. S. Grest, S. R. Nagel, A. Rahman, J. de Physique (Paris) 41, C8‐293 (1980).
6. D. Levesque, L. Verlet, J. Kurkijarvi, Phys. Rev. A 7, 1690 (1973); https://doi.org/PLRAAN
A. Rahman, Phys. Rev. A 9, 1667 (1974); https://doi.org/PLRAAN
H. Bell, H. Moeller‐Wenghoffer, A. Kollmar, R. Stockmeyer, T. Springer, H. Stiller, Phys. Rev. A 11, 316 (1975).https://doi.org/PLRAAN7. S. R. Nagel, A. Rahman, G. S. Grest, Phys. Rev. Lett. 47, 1665 (1981).https://doi.org/PRLTAO
8. The pioneering work in this area was by R. J. Bell and P. Dean; for a review, see R. J. Bell in Methods in Computational Physics, G. Gilat, ed., Academic, New York (1976), Vol. 15, page 215.
9. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976).
10. J. Hafner in Glassy Metals I, H.‐J. Güntherodt, H. Beck, eds., Springer‐Verlag, Berlin (1981).
11. G. S. Grest, S. R. Nagel, A. Rahman, Phys. Rev. Lett. 49, 1271 (1982).https://doi.org/PRLTAO
12. J.‐B. Suck, H. Rudin, H.‐J. Güntherodt, H. Beck, Phys. Rev. Lett. 50, 49 (1983); https://doi.org/PRLTAO
J.‐B. Suck, H. Rudin, H.‐J. Güntherodt, H. Beck, J. Phys. C 14, 2305 (1981).13. S. Takeno, M. Goda, Progress in Theoretical Physics 47, 790 (1972).
14. L. M. Schwartz, Phys. Rev. Lett. 50, 140 (1983).https://doi.org/PRLTAO
15. J. Hafner, J. Phys. C 14, L287 (1981).https://doi.org/JPSOAW
More about the Authors
Sidney R. Nagel. University of Chicago.
Gary S. Grest. Exxon's Corporate Research Science Laboratory, Linden, New Jersey.
Aneesur Rahman. Argonne National Laboratory.