Quantum nature of superfluid helium
DOI: 10.1063/1.3022882
Low‐temperature physics owes its existence to liquid helium, the refrigerant that permits investigation of phenomena occurring at a few degrees Kelvin. But liquid helium is fascinating in its own right, and the goal of understanding its “superfluidity” below 2.17 K has stimulated both experimenters and theorists.
References
1. J. F. Allen, A. D. Misener, Nature 141, 75 (1938); https://doi.org/NATUAS
P. Kapitsa, Nature 141, 74 (1938).https://doi.org/NATUAS2. W. H. Keesom, G. E. MacWood, Physica 5, 737 (1938).https://doi.org/PHYSAG
3. L. Tisza, Nature, 141, 913 (1938);
L. D. Landau, J. Phys. USSR 5, 71 (1941);
L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon, London (1959), chapter 16.4. F. London, Superfluids, vol. 2, Wiley, New York (1954), page 151, footnote.
5. L. Onsager, Nuovo Cimento Suppl. 6, 249;
R. P. Feynman in Progress in Low Temperature Physics vol. 1 (C. J. Goiter, ed.), North‐Holland, Amsterdam (1955) page 36.6. W. F. Vinen, Proc. Roy. Soc. (London) A260, 218 (1961).https://doi.org/PRLAAZ
7. S. C. Whitmore, W. ZimmermannJr, Phys. Rev. 166, 181 (1968).https://doi.org/PHRVAO
8. G. W. Rayfield, F. Reif, Phys. Rev. Lett. 11, 305 (1963).https://doi.org/PRLTAO
9. G. B. Hess, Phys. Rev. 161, 189 (1967).https://doi.org/PHRVAO
10. Reference 4, page 151.
11. R. E. Packard, T. M. SandersJr, Phys. Rev. Lett. 22, 823 (1969).https://doi.org/PRLTAO
12. G. B. Hess, W. M. Fairbank, Phys. Rev. Lett. 19, 216 (1967).https://doi.org/PRLTAO
13. J. D. Reppy, Phys. Rev. Lett. 14, 733 (1965); https://doi.org/PRLTAO
J. B. Mehl, W. ZimmermannJr, Phys. Rev. Lett. 14, 815 (1965); https://doi.org/PRLTAO
J. B. Mehl, W. ZimmermannJr, Phys. Rev. 167, 214 (1968).https://doi.org/PHRVAO14. U. Essman, H. Träuble, Scientific American, March 1971, page 75;
H. Trauble, U. Essman, J. Appl. Phys. 39, 4052 (1968).https://doi.org/JAPIAU15. R. P. Henkel, E. N. Smith, J. Reppy, Phys. Rev. Lett. 23, 1276 (1969).https://doi.org/PRLTAO
16. M. Kriss, I. Rudnick, J. Low Temp. Phys. 3, 339 (1970).https://doi.org/JLTPAC
17. I. Rudnick, J. C. Fraser, J. Low Temp. Phys. 3, 225 (1970).https://doi.org/JLTPAC
18. V. L. Ginzburg, L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958)
[V. L. Ginzburg, L. P. Pitaevskii, Sov. Phys.‐JETP 7, 858 (1958)].https://doi.org/ZETFA719. C. H. Anderson, E. S. Sabisky, Phys. Rev. Lett. 24, 1049 (1970).https://doi.org/PRLTAO
20. D. V. Osborne, Proc. Phys. Soc. 80, 103 (1962); https://doi.org/PPSOAU
S. Putterman, Towards a Macroscopic Theory of Superfluids, PhD Thesis, Rockefeller University (1970).21. W. E. Keller, Phys. Rev. Lett. 24, 569 (1970).https://doi.org/PRLTAO
22. V. M. Kantorovich, Zh. Eksp. Teor. Fiz. 30, 805 (1956)
[V. M. Kantorovich, Sov. Phys.‐JETP 3, 770 (1956)].https://doi.org/ZETFA723. J. D. Reppy, C. T. Lane, Phys. Rev. 140, A106 (1965).
More about the Authors
Seth J. Putterman. University of California, Los Angeles.
Isadore Rudnick. University of California, Los Angeles.