Discover
/
Article

Quantum Interference Fluctuations in Disordered Metals

DEC 01, 1988
Phase coherence over thousands of lattice spacings in disordered metals can produce quantum interference effects in electrical resistance measured in very small devices.
Richard A. Webb
Sean Washburn

In statistical physics one is trained to think about the properties of large ensembles of particles, and to calculate bulk properties by averaging over many microscopic configurations. Although the quantum mechanical properties of the individual constituents of a macroscopic object are important over some length scale (typically a few lattice spacings), they are usually not correlated across the whole object. We are, however, becoming acquainted with more and more disordered systems for which this effective length scale, at low temperatures, can be 100–10 000 times the characteristic microscopic scale; the correlation can involve more than 1011 particles. Such phenomena occur in an intermediate “mesoscopic” regime that lies between the microscopic world of atomic and molecular orbitals and the thoroughly macroscopic world where averages tell all. The wealth of novel quantum coherence phenomena recently observed in this intermediate size regime is the subject of this article.

This article is only available in PDF format

References

  1. 1. R. Landauer, Philos. Mag. 21, 863 (1970).https://doi.org/PHMAA4

  2. 2. See the reviews by A. G. Aronov, Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987); https://doi.org/RMPHAT
    Y. Imry, in Directions in Condensed Matter Physics, G. Grinstein, E. Mazenko, eds., World Scientific, Singapore (1986);
    S. Washburn, R. A. Webb, Adv. Phys. 35, 375 (1986).https://doi.org/ADPHAH

  3. 3. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986).https://doi.org/PRLTAO

  4. 4. N. B. Brandt, D. B. Gitsu, V. A. Dolma, Ya. G. Ponomarev, Sov. Phys. JETP 65, 515 (1987), and references cited therein.https://doi.org/SPHJAR

  5. 5. M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983). https://doi.org/PYLAAG
    Y. Gefen, Y. Imry, M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984).https://doi.org/PRLTAO

  6. 6. R. A. Webb, S. Washburn, C. P. Umbach, R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985). https://doi.org/PRLTAO
    V. Chandrasekhar, M. J. Rooks, S. Wind, D. E. Prober, 55, 1610 (1985).
    S. Datta, M. R. Melloch, S. Bandyopadyay, R. Noren, M. Varizi, M. Miller, R. Reifenberg, Phys. Rev. Lett. 55, 2344 (1985).https://doi.org/PRLTAO

  7. 7. A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985).https://doi.org/PRLTAO

  8. 8. A. D. Stone, Y. Imry, Phys. Rev. Lett. 56, 189 (1986).https://doi.org/PRLTAO

  9. 9. B. L. Al’tshuler, JETP Lett. 41, 648 (1985). https://doi.org/JTPLA2
    B. L. Al’tshuler, B. I. Shklovskii, Sov. Phys. JETP 64, 127 (1986). https://doi.org/SPHJAR
    P. A. Lee, A. D. Stone, H. Fukuyama, Phys. Rev. B 35, 1039 (1987). https://doi.org/PRBMDO
    P. Lee, A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).https://doi.org/PRLTAO

  10. 10. Y. Imry, Europhys. Lett. 1, 249 (1986). https://doi.org/EULEEJ
    P. A. Lee, Physica A 140, 169 (1986).https://doi.org/PHYADX

  11. 11. J. C. Licini, D. J. Bishop, M. A. Kastner, J. Melngailis, Phys. Rev. Lett. 55, 2987 (1985). https://doi.org/PRLTAO
    S. Washburn, C. P. Umbach, R. B. Laibowitz, R. A. Webb, Phys. Rev. B 32, 4789 (1985).https://doi.org/PRBMDO

  12. 12. G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987).https://doi.org/PRLTAO

  13. 13. C. P. Umbach, C. van Haesendonck, R. B. Laibowitz, S. Washburn, R. A. Webb, Phys. Rev. Lett. 56, 386 (1986). https://doi.org/PRLTAO
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, A. D. Stone, Phys. Rev. Lett. 56, 2865 (1986).https://doi.org/PRLTAO

  14. 14. F. P. Milliken, S. Washburn, C. P. Umbach, R. B. Laibowitz, R. A. Webb, Phys. Rev. B 36, 4465 (1987).https://doi.org/PRBMDO

  15. 15. A. D. Benoit, S. Washburn, C. P. Umbach, R. A. Webb, D. Mailly, L. Dumoulin, in Anderson Localization, H. Fukuyama, ed., Springer‐Verlag, Heidelberg (1988).

  16. 16. B. L. Al’tshuler, D. E. Khmel’nitskii, JETP Lett. 42, 359 (1985). https://doi.org/JTPLA2
    D. E. Khmel’nitskii, A. I. Larkin, Sov. Phys. JETP 64, 1075 (1986). https://doi.org/SPHJAR
    A. I. Larkin, K. A. Matveev, Sov. Phys. JETP 66, 580 (1987).https://doi.org/SPHJAR

  17. 17. S. B. Kaplan, Surf. Sci. 196, 196 (1988). https://doi.org/SUSCAS
    R. A. Webb, S. Washburn, C. P. Umbach, Phys. Rev. B 37, 8455 (1988).https://doi.org/PRBMDO

  18. 18. S. Washburn, H. Schmid, D. P. Kern, R. A. Webb, Phys. Rev. Lett. 59, 1791 (1987).https://doi.org/PRLTAO

  19. 19. B. L. Al’tshuler, B. Z. Spivak, JETP Lett. 42, 447 (1985).https://doi.org/JTPLA2

  20. 20. A. Benoit, C. P. Umbach, R. B. Laibowitz, R. A. Webb, Phys. Rev. Lett. 58, 2343 (1987). https://doi.org/PRLTAO
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, A. D. Stone, Phys. Rev. Lett. 58, 2347 (1987).https://doi.org/PRLTAO

  21. 21. Y. Isawa, H. Ebisawa, S. Maekawa, in Anderson Localization, H. Fukuyama, ed., Springer‐Verlag, Heidelberg (1988).
    J. Phys. Soc. Jpn. 56, 25 (1987). https://doi.org/JUPSAU
    M. Büttiker, Phys. Rev. B 35, 4123 (1987).https://doi.org/PRBMDO

  22. 22. H. U. Baranger, A. D. Stone, D. di Vincenzo, Phys. Rev. B 37, 6521 (1988). https://doi.org/PRBMDO
    C. L. Kane, P. A. Lee, D. diVincenzo, Phys. Rev. B 38, 2995 (1988). https://doi.org/PRBMDO
    D. P. diVincenzo, C. L. Kane, Phys. Rev. B 38, 3006 (1988). https://doi.org/PRBMDO
    S. Hershfield, V. Ambegaokar, Phys. Rev. B 38, 7909 (1988).https://doi.org/PRBMDO

  23. 23. M. Büttiker, IBM J. Res. Dev. 32, 317 (1988). https://doi.org/IBMJAE
    M. Büttiker, Phys. Rev. Lett. 56, 1761 (1986). https://doi.org/PRLTAO
    A. D. Benoit, S. Washburn, C. P. Umbach, R. B. Laibowitz, R. A. Webb, Phys. Rev. Lett. 56, 1765 (1986).https://doi.org/PRLTAO

  24. 24. R. A. Webb, S. Washburn, H. J. Haucke, A. D. Benoit, C. P. Umbach, F. P. Milliken, in Physics and Technology of Submicron Structures, Springer‐Verlag, Heidelberg (1988).

  25. 25. C. P. Umbach, P. Santhanam, C. van Haesendonck, R. A. Webb, Appl. Phys. Lett. 50, 1289 (1987).https://doi.org/APPLAB

More about the Authors

Richard A. Webb. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Sean Washburn. IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1988_12.jpeg

Volume 41, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.