Discover
/
Article

Quantum chemistry and catalysis

OCT 01, 1974
Powerful theoretical techniques are revealing similarities—particularly the role of the d‐electrons—in the electronic structure of molecules, complexes and clusters important in many diverse catalytic processes.
John C. Slater
Keith H. Johnson

Why do platinum, palladium, nickel and iron, as well as other Group‐VIII transition metals, continually turn up as the active sites in catalysts? Why do certain enzymes and proteins—substances such as hemoglobin and ferredoxin that catalyze metabolic processes in living organisms—also appear to rely on transition metals for their action? How do catalysts work anyway, and could we design better ones? We are much nearer answering these questions and other related ones now that new methods, both theoretical and experimental, are available to investigate the electronic structure of complex molecules and materials of the type important to catalysis.

This article is only available in PDF format

References

  1. 1. John C. Fisher, PHYSICS TODAY, December 1973; page 40.

  2. 2. Traugott E. Fischer, PHYSICS TODAY, May, 1974; page 23.

  3. 3. Workshop on Catalysts as Materials, Center for Materials Research, Stanford University, 22–24 March, 1973.

  4. 4. Catalysis and Surface Science, Solid State Sciences Panel Fall Meeting, hosted by Wayne State University, General Motors Research Laboratories and Ford Scientific Research Staff, 22–23 October, 1973.

  5. 5. The Physical Basis of Heterogeneous Catalysis, Battelle Colloquium, Gstaad, Switzerland, 2–6 September, 1974.

  6. 6. M. Boudart, Proceedings of the Robert A. Welch Foundation Conference on Chemical Research. XIV: Solid State Chemistry (W. O. Milligan, ed.), The Robert A. Welch Foundation, Houston, Texas (1970); page 299.

  7. 7. J. H. Sinfelt, J. Catal. 29, 308 (1973).https://doi.org/JCTLA5

  8. 8. G. C. Bond, in Homogeneous Catalysis, Industrial Applications and Implications, American Chemical Society Advances in Chemistry, Vol. 70, American Chemical Society, Washington, D.C. (1968); page 25.

  9. 9. M. F. Perutz, J. Mol. Biol. 13, 646 (1965); https://doi.org/JMOBAK
    M. F. Perutz, Nature 228, 726 (1970).https://doi.org/NATUAS

  10. 10. T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, J. F. Weiher, Proc. Nat. Acad. Sci. US 69, 2437 (1972).https://doi.org/PNASA6

  11. 11. J. C. Slater, J. Chem. Phys. 43, S228 (1965).https://doi.org/JCPSA6

  12. 12. K. H. Johnson, J. Chem. Phys. 45, 3085 (1966).https://doi.org/JCPSA6

  13. 13. J. C. Slater, The Self‐Consistent Field for Molecules and Solids, Volume 4 of Quantum Theory of Molecules and Solids, McGraw‐Hill, New York (1974).

  14. 14. J. C. Slater, K. H. Johnson, Phys. Rev. B5, 844 (1972); https://doi.org/PLRBAQ
    K. H. Johnson, F. C. SmithJr, Phys. Rev. B5, 831 (1972).https://doi.org/PLRBAQ

  15. 15. J. C. Slater, in Advances in Quantum Chemistry, Vol. 6 (P.‐O. Lowdin, ed.) Academic Press, New York (1972); page 1.

  16. 16. K. H. Johnson, in Advances in Quantum Chemistry, Vol. 7 (P.‐O. Lowdin, ed.) Academic Press, New York (1973); page 143.

  17. 17. K. H. Johnson, J. G. Norman Jr, J. W. D. Connolly, in Computational Methods for Large Molecules and Localized States in Solids (F. Herman, A. D. McLean, R. K. Nesbet, eds.) Plenum, New York (1973); page 161.

  18. 18. K. H. Johnson, J. B. Diamond, R. P. Messmer, S. K. Knudson, General Electric Technical Report No. 74CRDO52, Schenectady, New York (1974).

  19. 19. J. L. Carter, J. H. Sinfelt, J. Catal. 10, 134 (1968).https://doi.org/JCTLA5

  20. 20. G. A. Somorjai, Catalysis Rev. 7, 87 (1972).https://doi.org/CTRVBY

  21. 21. J. G. Fripiat, K. T. Chow, M. Boudart, J. B. Diamond, K. H. Johnson, J. C. S. Faraday Transactions (submitted for publication).

  22. 22. N. Rösch, T. N. Rhodin, Phys. Rev. Lett. 32, 1189 (1974).https://doi.org/PRLTAO

  23. 23. D. E. Eastman, J. K. Cashion, A. C. Switendick, Phys. Rev. Lett. 27, 35 (1971).https://doi.org/PRLTAO

  24. 24. N. Rösch, R. P. Messmer, K. H. Johnson, J. Amer. Chem. Soc. 96, 3855 (1974).https://doi.org/JACSAT

  25. 25. J. Aleksandrowicz, ScD Thesis, MIT, Department of Chemical Engineering, Cambridge, Massachusetts (1970).

  26. 26. E. Li, K. H. Johnson, D. E. Eastman, J. L. Freeouf, Phys. Rev. Lett. 32, 470 (1974).https://doi.org/PRLTAO

  27. 27. M. Calvin, Science 184, 375 (1974).https://doi.org/SCIEAS

More about the Authors

John C. Slater. Massachusetts Institute of Technology and University of Florida Gainesville.

Keith H. Johnson. Department of Metallurgy and Materials science, MIT.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1974_10.jpeg

Volume 27, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.