Discover
/
Article

Positron beams

FEB 01, 1969
These particles are now made with an intensity and energy approaching those of primary electron beams; their applications include scattering experiments, colliding‐beam experiments and annihilation photon production.
David E. Yount

POSITIVE ELECTRONS, which offer interesting comparisons with negative electrons and can be a useful source of photons, may be made by pair production in a target placed in the electron path of a linear accelerator. Greater intensity can be achieved by acceleration, by a coaxial solenoid, with magnetic quadrupoles or by a solenoid‐quadrupole combination. One important application of these positron beams is the production of “tertiary” beams of annihilation photons that can provide a partially monochromatic photon beam. Other applications include positron‐proton and electron‐proton scattering comparisons and colliding‐beam experiments in which electrons are injected at high energies into storage rings.

This article is only available in PDF format

References

  1. 1. R. B. Neal, PHYSICS TODAY 20, no. 4, 27 (1967).https://doi.org/PHTOAD

  2. 2. J. A. Poirier, D. M. Bernstein, J. Pine, Phys. Rev. 117, 557 (1960).https://doi.org/PHRVAO

  3. 3. D. Yount, J. Pine, Nucl. Instr. and Methods 15, 45 (1962).https://doi.org/NUIMAL

  4. 4. D. Yount, J. Pine, Phys. Rev. 128, 1842 (1962).https://doi.org/PHRVAO

  5. 5. A. Browman, F. Liu, C. Schaerf, Phys. Rev. 139, B1079 (1965).https://doi.org/PHRVAO

  6. 6. R. L. Anderson, B. Borgia, G. L. Cassidy, J. W. DeWire, A. S. Ito, E. C. Loh, Phys. Rev. Letters 17, 407 (1966).https://doi.org/PRLTAO

  7. 7. A. DeHollan, E. Engels, B. Knapp, L. Hand, Proceedings of the XIIIth International Conference on High‐Energy Physics, Berkeley (1966).

  8. 8. W. Bartel, B. Dudelzak, H. Krehbiel, J. M. McElroy, R. J. Morrison, W. Schmidt, V. Walther, G. Weber, DESY 67/22 (1967).

  9. 9. B. Bouquet, D. Benaksas, B. Grossetète, B. Jean‐Marie, G. Parrour, J. P. Poux, R. Tchapoutian, Laboratoire de l’Accélérateur Linéaire Report LAL 1183 (1967).

  10. 10. J. Mar, B. C. Barish, J. Pine, D. H. Coward, H. DeStaebler, J. Litt, A. Minten, R. E. Taylor, M. Breidenbach, Bull. Am. Phys. Soc. 13, no. 4, 636 (1968); https://doi.org/BAPSA6
    J. Mar, B. C. Barish, J. Pine, D. H. Coward, H. DeStaebler, J. Litt, A. Minten, R. E. Taylor, M. Breidenbach, Phys. Rev. Letters 21, 482 (1968).https://doi.org/PRLTAO

  11. 11. J. Goldemberg, J. Pine, D. Yount, Phys. Rev. 132, 406 (1963).https://doi.org/PHRVAO

  12. 12. A. Browman, B. Grossetète, D. Yount, Phys. Rev. 143, 899 (1966).https://doi.org/PHRVAO

  13. 13. A. Browman, B. Grossetète, D. Yount, Phys. Rev. 151, 1094 (1966).https://doi.org/PHRVAO

  14. 14. Proceedings of the International Symposium on Electron and Positron Storage Rings, Saclay, France, 26–30 September 1966.

  15. 15. C. S. Nunan, IEEE Trans. Nucl. Sci. NS‐12, no. 3, 465 (June 1965).https://doi.org/IETNAE

  16. 16. J. T. Caldwell, R. R. Harvey, R. L. Bramblett, S. C. Fultz, Phys. Letters 6, 213 (1963). https://doi.org/PHLTAM
    S. C. Fultz et al., Phys. Rev. 127, 1273 (1962); https://doi.org/PHRVAO
    S. C. Fultz et al., Phys. Rev. 128, 2345 (1962).https://doi.org/PHRVAO

  17. 17. PHYSICS TODAY 21, no. 5, 77 (1968).https://doi.org/PHTOAD

  18. 18. J. Miller, C. Schuhl, G. Tamas, C. Tzara, in “Contributions to the Karlsruhe Photonuclear Conference,” Karlsruhe, Germany, 18–22 August 1960.

  19. 19. H. Brechna, K. E. Breymayer, K. G. Garney, H. DeStaebler, R. H. Heln, C. T. Hoard, in The Stanford Two‐Mile Accelerator, R. B. Neal, ed., W. A. Benjamin, Inc., New York, (1968).

  20. 20. J. Ballam, G. Chadwick, Z. Guiragossián, D. Leith, R. R. Larsen, S. Williams, “The SLAC Monochromatic Photon Beam,” to be published.

More about the authors

David E. Yount, SLAC.

Related content
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
/
Article
Beneath the ice shelves of the frozen continent, a hidden boundary layer of turbulent ocean is determining Antarctica’s fate.
This Content Appeared In
pt-cover_1969_02.jpeg

Volume 22, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.