Physics of rapidly rotating nuclei
DOI: 10.1063/1.2995584
In recent years, a new field of nuclear research has been opened through the possibility of studying nuclei with very large values of the angular momentum. This development has been closely associated with the study of heavy‐ion reactions, since collisions between two heavy nuclei are especially effective in producing metastable compound systems with large angular momenta. The study of such rapidly rotating nuclear systems provides the opportunity for exploring new aspects of nuclear dynamics. In figure 1 we show a multiple‐coincidence spectrometer for studying gamma‐ray cascades from the decay of these high‐angular‐momentum states. It comprises eighteen NaI detectors arranged around an on‐line target; seven of the detectors and their photo‐multipliers are visible in the photo. The arrangement gives high sensitivity to gamma‐ray cascades, which in some cases exceed thirty consecutive gamma rays. The spectrometer was constructed at the Niels Bohr Institute and is being used in a Copenhagen‐Darmstadt collaboration.
References
1. S. Cohen, F. Plasil, W. J. Swaitecki, Ann. Phys. 82, 557 (1974).https://doi.org/ANPYA2
2. J. R. Grover, Phys. Rev. 157, 832 (1967).https://doi.org/PHRVAO
3. For a more systematic discussion of the rotational properties of nuclei, see A. Bohr, B. R. Mottelson, Nuclear Structure, Benjamin, New York (1975), volume II, chapter 4.
Recent developments are reviewed in the conference report Journ. Phys. Soc. Japan 44, 157 (1978).https://doi.org/JUPSAU4. A. Johnson, H. Ryde, S. A. Hjorth, Nucl. Phys. A179, 753 (1972).https://doi.org/NUPBBO
5. O. C. Kistner, A. W. Sunyar, E. der Mateosian, Phys. Rev. C17, 1417 (1978).https://doi.org/PRVCAN
6. N. R. Johnson, D. Cline, S. W. Yates, F. S. Stephens, L. L. Riedinger, R. M. Ronningen, Phys. Rev. Lett. 40, 151 (1978).https://doi.org/PRLTAO
7. The interpretation of the bandcrossing as a result of rotational alignment produced by Coriolis forces was given by F. S. Stephens, R. S. Simon, Nucl. Phys. A183, 157 (1972).https://doi.org/NUPABL
8. S. A. Hjorth, H. Ryde, K. A. Hagemann, G. Lövhöiden, J. C. Waddington, Nucl. Phys. A144, 513 (1970).https://doi.org/NUPABL
9. A. Goswami, L. Lin, G. L. Struble, Phys. Lett. 25B, 451 (1967).
10. For yrast spectra in the neighborhood of Pb208, see, for example, D. Horn, O. Häusser, T. Faestermann, A. B. McDonald, T. K. Alexander, J. R. Beene, C. J. Herlander, Phys. Rev. Lett. 39, 389 (1977).https://doi.org/PRLTAO
11. T. D. Khoo, R. K. Smither, B. Haas, O. Häusser, H. R. Andrews, D. Horn, D. Ward, Phys. Rev. Lett. 41, 1027 (1978).https://doi.org/PRLTAO
12. J. Pedersen, B. B. Bach, F. M. Bernthal, S. Bjo/rnholm, J. Borggreen, O. Christensen, F. Folkmann, B. Herskind, T. L. Khoo, N. Neiman, F. Pühlhofer, G. Sletten, Phys. Rev. Lett. 39, 990 (1977).https://doi.org/PRLTAO
13. M. A. Delaplanque, I. Y. Lee, F. S. Stephens, R. M. Diamond, M. M. Aleonard, Phys. Rev. Lett. 40, 629 (1978).https://doi.org/PRLTAO
More about the Authors
Aage Bohr. Niels Bohr Institute.
Ben R. Mottelson. Niels Bohr Institute.