Most effort so far has gone into laser isotope separation, for which several methods are available, but important applications for the future include some interesting topics in biochemistry.
Current progress with tunable lasers has made possible the selective excitation of practically any single quantum state of an atom or a molecule with excitation energy in the range 0.1 to 10 eV. Already we can obtain coherent radiation with sufficient intensity to excite a significant fraction of an atomic or molecular sample into chosen quantum states in the wavelength range 2000 Å to 20 microns. Systematic studies of the effect of selective laser radiation on matter have been under way since around 1969 and 1970, when substantial progress in the art of quantum electronics made the experiments possible.
References
1. V. S. Letokhov, C. B. Moore, Kvantovaya Elektronika (Russian) 3, 248 (1976); V. S. Letokhov, C. B. Moore, 3, 485 (1976) [V. S. Letokhov, C. B. Moore, Sov. J. Quant. Electr. 6, 129 (1976); https://doi.org/SJQEAF V. S. Letokhov, C. B. Moore, 6, 259 (1976)].https://doi.org/SJQEAF, Sov. J. Quantum Electron.
2. J. P. Aldridge III, J. H. Birely, C. D. Cantrell III, D. S. Cartwright in Laser Photochemistry, Tunable Lasers, and Other Topics, (Physics of Quantum Electronics, vol. 4, S. F. Jacobs, M. Sargent III, M. O. Scully, C. T. Walker, eds., Addison‐Wesley, Reading, Mass.); page 57.
4. R. V. Ambartzumian, V. P. Kalinin, V. S. Letokhov, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 13, 305 (1971) [R. V. Ambartzumian, V. P. Kalinin, V. S. Letokhov, Sov. Phys.‐JETP Lett. 13, 217 (1971)].https://doi.org/SPHJAR
5. V. S. Letokhov, R. V. Ambartzumian, IEEE J. Quant. Electr. QE‐7, 305 (1971); https://doi.org/IEJQA7 R. V. Ambartzumian, V. S. Letokhov, Appl. Optics 11, 354 (1972).https://doi.org/APOPAI
6. C. S. Janes, I. Itzkan, C. T. Pike, R. H. Levy, L. Levin, IEEE J. Quant. Electr. QE‐11, 101D (1975).https://doi.org/IEJQA7
7. S. A. Tuccio, J. W. Dubrin, O. G. Peterson, B. B. Snavely, IEEE J. Quant. Electr. QE‐10, 790 (1974).https://doi.org/IEJQA7
8. R. V. Ambartzumian, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 15, 709 (1972); R. V. Ambartzumian, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, 17, 91 (1973) [R. V. Ambartzumian, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, Sov. Phys.‐JETP Lett. 15, 501 (1972); https://doi.org/SPHJAR R. V. Ambartzumian, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, 17, 63 (1973)].https://doi.org/SPHJAR, Sov. Phys. JETP
10. N. R. Isenor, M. C. Richardson, Appl. Phys. Lett. 18, 224 (1971).https://doi.org/APPLAB
11. R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov, N. V. Chekalin, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 80, 597 (1974) [R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov, N. V. Chekalin, Sov. Phys.‐JETP Lett. 20, 273 (1974)]; https://doi.org/SPHJAR R. V. Ambartzumian, Yu. A. Gorbkhov, V. S. Letokhov, G. N. Makarov, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 21, 375 (1975) [R. V. Ambartzumian, Yu. A. Gorbkhov, V. S. Letokhov, G. N. Makarov, Sov. Phys.‐JETP Lett. 21, 171 (1975)].https://doi.org/SPHJAR
12. R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, N. P. Furzikov, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 23, 217 (1976) [R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, N. P. Furzikov, Sov. Phys.‐JETP Lett. 23, 194 (1976)]; https://doi.org/SPHJAR R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, N. P. Furzikov, Optics Comm. 18, 517 (1976).https://doi.org/OPCOB8
13. D. S. King, R. M. Hochstrasser, J. Amer. Chem. Soc. 97, 4760 (1975).https://doi.org/JACSAT
14. K. S. Gochelashvili, N. V. Karlov, A. N. Orlov, P. R. Petrov, Yu. N. Petrov, A. M. Prokhorov, Pis’ma Zh. Eksp. Teor. Fiz. (Russian) 21, 640 (1975) [K. S. Gochelashvili, N. V. Karlov, A. N. Orlov, P. R. Petrov, Yu. N. Petrov, A. M. Prokhorov, Sov. Phys.‐JETP Lett. 21, 302 (1975)].https://doi.org/SPHJAR
15. N. G. Basov, E. M. Belenov, V. A. Isakov, Yu. S. Leonov, E. P. Markin, A. N. Oraevskii, V. I. Romanenko, Pis’ma Zh. Eksp. Teor. Fiz. 22, 221 (1975) [N. G. Basov, E. M. Belenov, V. A. Isakov, Yu. S. Leonov, E. P. Markin, A. N. Oraevskii, V. I. Romanenko, Sov. Phys.‐JETP Lett. 22, 102 (1975)].https://doi.org/SPHJAR
16. M. S. Djidjoev, R. V. Khokhov, A. V. Kiselev, V. I. Lygin, N. A. Namiot, A. I. Osipov, V. I. Panchenko, B. I. Provotorov in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer‐Verlag, Berlin‐Heidelberg, 1976); page 100.
17. V. S. Letokhov, Kvantovaya Elektronika (Russian) 2, 930 (1975); V. S. Letokhov, Phys. Lett. 51A, 231 (1975).https://doi.org/PYLAAG
18. V. S. Letokhov, V. I. Mishin, A. A. Puretzkii in Progress on Quantum Electronics, J. H. Sanders, S. Stenholm, eds. (Pergamon, London), vol. 6 (in press).
19. R. V. Ambartzumian, V. S. Letokhov in Chemical and Biochemical Applications of Lasers, C. B. Moore, ed. (Academic, New York), vol. 2 (in press).
20. J. L. Lyman, R. J. Jensen, J. Rink, C. P. Robinson, S. D. Rockwood, Appl. Phys. Lett. 27, 87 (1975).https://doi.org/APPLAB
21. R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, A. A. Puretzkii, Zh. Eksp. Teor. Fiz. (Russian) 71, 440 (1976).
22. N. Bloembergen, C. D. Cantrell, D. M. Larsen in Tunable Lasers and Applications, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer‐Verlag, Berlin‐Heidelberg, 1976); page 162.
23. P. O. Löwdin, Adv. Quant. Chem. 2, 213 (1968); https://doi.org/AQCHA9 and in Electtronics Aspects of Biochemistry, B. Pullman, ed. (Academic New York, 1964); page 167.
24. J. Ladik, Quantenbiochemie für Chemiker und Biologen, Akademiai Kiado, Budapest (1972).
25. V. S. Letokhov, Uspekhi Fiz. Nauk (Russian) 116, 199 (1976); Laser Spectroscopy, Akademie‐Verlag, Berlin (1977).
26. S. V. Andreyev, V. S. Antonov, I. N. Knyazev, V. S. Letokhov, Chem. Phys. Lett. 45, 166 (1977).https://doi.org/CHPLBC
27. V. K. Potapov, V. G. Movshev, V. S. Letokhov, I. N. Knyazev, T. I. Evlashova, Kvantovaya Elektronika (Russian) 3, 2610 (1976).
28. E. W. Müller, Tien Tzon Tsong, Field Ion Microscopy, Amer. Elsevier, New York (1969).
29. D. W. Werwoerd, H. Kohlhage, W. Zillig, Nature 192, 1038 (1961).https://doi.org/NATUAS
More about the Authors
V. S. Letokhov.
Institute of Spectroscopy, Academy of Sciences of the USSR, Moscow.
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.
September 01, 2025 12:00 AM
Get PT in your inbox
Physics Today - The Week in Physics
The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.