Discover
/
Article

Organic solids: is energy‐band theory enough?

FEB 01, 1980
Their increasing usefulness, their chemical flexibility, and the inability of traditional models to explain their electronic properties makes the study of organic solids a fascinating frontier of solid‐state physics.
Charles B. Duke
L. B. Schein

The study of the electronic properties of organic solids is a major new frontier in solid state physics. On the practical side, organic solids provide electronic and optical materials whose properties can be tailored to suit specific applications. They also pose continuing challenges to fundamental concepts because they afford unique model systems for establishing the bounds of validity for the traditional energy‐band models that have proven so successful in describing the electronic properties of inorganic metals and semiconductors.

This article is only available in PDF format

References

  1. 1. See, for example C. Kittel, Quantum Theory of Solids, Wiley, New York, (1963);
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic, New York (1973).

  2. 2. C. B. Duke, Mol. Cryst. Liq. Cryst. 50, 63 (1979); https://doi.org/MCLCA5
    C. B. Duke, Surf. Sci. 70, 674 (1978); https://doi.org/SUSCAS
    C. B. Duke, W. R. Salaneck, T. J. Fabish, J. J. Ritsko, H. R. Thomas, A. Paton, Phys. Rev. B 18, 5717 (1978).https://doi.org/PLRBAQ

  3. 3. P. W. Anderson, Rev. Mod. Phys., 50, 191 (1978);
    D. Weaire, V. Srivastava in Amorphous and Liquid Semiconductors, W. E. Spear, ed., G. G. Stevenson, Dundee (1977) page 286.

  4. 4. J. S. Miller, A. J. Epstein, eds., Synthesis and Properties of Low‐Dimensional Solids, New York Academy of Sciences, New York (1978).

  5. 5. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959); https://doi.org/APNYA6
    J. Yamashita, T. Kurosawa, Phys. Chem. Solids 5, 34 (1958); https://doi.org/PCSOA7
    J. Yamashita, T. Kurosawa, J. Phys. Soc. Jap. 15, 802 (1960).

  6. 6. R. W. Munn, W. Siebrand, J. Chem. Phys. 52, 6391 (1970); https://doi.org/JCPSA6
    R. W. Munn, W. Siebrand, Chem. Phys. Lett. 9, 655 (1969).https://doi.org/CHPLBC

  7. 7. L. B. Schein, Chem. Phys. Lett. 48, 571 (1977); https://doi.org/CHPLBC
    L. B. Schein, A. R. McGhie, Chem. Phys. Lett. 62, 356 (1979).https://doi.org/CHPLBC

  8. 8. A. Madhukar, W. Post, Phys. Rev. Lett. 39, 1424 (1977). https://doi.org/PRLTAO
    H. Sumi, Solid State Commun. 28, 309 (1978); https://doi.org/SSCOA4
    H. Sumi, 29, 495 (1979);
    H. Sumi, J. Chem. Phys. 70, 3775 (1979).

  9. 9. L. B. Schein, C. B. Duke, A. R. McGhie, Phys. Rev. Lett. 40, 197 (1978).https://doi.org/PRLTAO

  10. 10. N. F. Mott, Rev. Mod. Phys. 50, 203 (1978) and references therein.https://doi.org/RMPHAT

  11. 11. C. B. Duke, W. R. Salaneck, A. Paton, K. S. Liang, N. O. Lipari, R. Zallen, in Structure and Excitations of Amorphous Solids, G. Lucovsky, F. L. Galeener, eds, American Institute of Physics, New York (1976), page 23;
    W. D. Grobman, E. E. Koch, in Photoemission of Solids, L. Ley, M. Cardona, eds. Springer, Berlin (1979), page 261.

  12. 12. W. R. Salaneck, Phys. Rev. Lett. 40, 60 (1978).https://doi.org/PRLTAO

  13. 13. B. Reimer, H. Bassler, Phys. Status Solidi (A) 51, 445 (1979).https://doi.org/PSSABA

  14. 14. H. Meier, Organic Semiconductors Verlag Chemie, Weinheim (1974).

  15. 15. C. B. Duke, T. J. Fabish, J. Appl. Phys. 49, 315 (1978).https://doi.org/JAPIAU

  16. 16. W. D. Gill, in Photoconductivity and Related Phenomena, J. Mort, D. M. Pai, eds., Elsevier, Amsterdam (1976), page 303.

  17. 17. J. M. Pearson, Pure and Appl. Chem. 49, 463 (1977); https://doi.org/PACHAS
    G. Pfister, Phys. Rev. B 16, 3676 (1977).https://doi.org/PLRBAQ

  18. 18. C. B. Duke, in Tunneling in Biological Systems, B. Chance, et al., eds., Academic, New York (1979), page 31.

  19. 19. See, for example, N. F. Mott, E. A. Davis, Electronic Processes in Non‐Crystalline Media, Oxford U.P. (1971), page 152.

  20. 20. L. B. Schein, Phys. Rev. B 15, 1024 (1977).https://doi.org/PLRBAQ

  21. 21. L. B. Schein, A. R. McGhie, Phys. Rev. B70, 1631 (1979).

  22. 22. S. Efrima, H. Metiu, J. Chem. Phys. 69, 5113 (1978); https://doi.org/JCPSA6
    S. Efrima, H. Metiu, Chem. Phys. Lett. 60, 226 (1979).https://doi.org/CHPLBC

More about the authors

Charles B. Duke, Xerox Webster Research Center, Rochester, New York.

L. B. Schein, Xerox Webster Research Center, Rochester, New York.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1980_02.jpeg

Volume 33, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.