Discover
/
Article

Organic solids: is energy‐band theory enough?

FEB 01, 1980
Their increasing usefulness, their chemical flexibility, and the inability of traditional models to explain their electronic properties makes the study of organic solids a fascinating frontier of solid‐state physics.

DOI: 10.1063/1.2913938

Charles B. Duke
L. B. Schein

The study of the electronic properties of organic solids is a major new frontier in solid state physics. On the practical side, organic solids provide electronic and optical materials whose properties can be tailored to suit specific applications. They also pose continuing challenges to fundamental concepts because they afford unique model systems for establishing the bounds of validity for the traditional energy‐band models that have proven so successful in describing the electronic properties of inorganic metals and semiconductors.

References

  1. 1. See, for example C. Kittel, Quantum Theory of Solids, Wiley, New York, (1963);
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic, New York (1973).

  2. 2. C. B. Duke, Mol. Cryst. Liq. Cryst. 50, 63 (1979); https://doi.org/MCLCA5
    C. B. Duke, Surf. Sci. 70, 674 (1978); https://doi.org/SUSCAS
    C. B. Duke, W. R. Salaneck, T. J. Fabish, J. J. Ritsko, H. R. Thomas, A. Paton, Phys. Rev. B 18, 5717 (1978).https://doi.org/PLRBAQ

  3. 3. P. W. Anderson, Rev. Mod. Phys., 50, 191 (1978);
    D. Weaire, V. Srivastava in Amorphous and Liquid Semiconductors, W. E. Spear, ed., G. G. Stevenson, Dundee (1977) page 286.

  4. 4. J. S. Miller, A. J. Epstein, eds., Synthesis and Properties of Low‐Dimensional Solids, New York Academy of Sciences, New York (1978).

  5. 5. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959); https://doi.org/APNYA6
    J. Yamashita, T. Kurosawa, Phys. Chem. Solids 5, 34 (1958); https://doi.org/PCSOA7
    J. Yamashita, T. Kurosawa, J. Phys. Soc. Jap. 15, 802 (1960).

  6. 6. R. W. Munn, W. Siebrand, J. Chem. Phys. 52, 6391 (1970); https://doi.org/JCPSA6
    R. W. Munn, W. Siebrand, Chem. Phys. Lett. 9, 655 (1969).https://doi.org/CHPLBC

  7. 7. L. B. Schein, Chem. Phys. Lett. 48, 571 (1977); https://doi.org/CHPLBC
    L. B. Schein, A. R. McGhie, Chem. Phys. Lett. 62, 356 (1979).https://doi.org/CHPLBC

  8. 8. A. Madhukar, W. Post, Phys. Rev. Lett. 39, 1424 (1977). https://doi.org/PRLTAO
    H. Sumi, Solid State Commun. 28, 309 (1978); https://doi.org/SSCOA4
    H. Sumi, 29, 495 (1979);
    H. Sumi, J. Chem. Phys. 70, 3775 (1979).

  9. 9. L. B. Schein, C. B. Duke, A. R. McGhie, Phys. Rev. Lett. 40, 197 (1978).https://doi.org/PRLTAO

  10. 10. N. F. Mott, Rev. Mod. Phys. 50, 203 (1978) and references therein.https://doi.org/RMPHAT

  11. 11. C. B. Duke, W. R. Salaneck, A. Paton, K. S. Liang, N. O. Lipari, R. Zallen, in Structure and Excitations of Amorphous Solids, G. Lucovsky, F. L. Galeener, eds, American Institute of Physics, New York (1976), page 23;
    W. D. Grobman, E. E. Koch, in Photoemission of Solids, L. Ley, M. Cardona, eds. Springer, Berlin (1979), page 261.

  12. 12. W. R. Salaneck, Phys. Rev. Lett. 40, 60 (1978).https://doi.org/PRLTAO

  13. 13. B. Reimer, H. Bassler, Phys. Status Solidi (A) 51, 445 (1979).https://doi.org/PSSABA

  14. 14. H. Meier, Organic Semiconductors Verlag Chemie, Weinheim (1974).

  15. 15. C. B. Duke, T. J. Fabish, J. Appl. Phys. 49, 315 (1978).https://doi.org/JAPIAU

  16. 16. W. D. Gill, in Photoconductivity and Related Phenomena, J. Mort, D. M. Pai, eds., Elsevier, Amsterdam (1976), page 303.

  17. 17. J. M. Pearson, Pure and Appl. Chem. 49, 463 (1977); https://doi.org/PACHAS
    G. Pfister, Phys. Rev. B 16, 3676 (1977).https://doi.org/PLRBAQ

  18. 18. C. B. Duke, in Tunneling in Biological Systems, B. Chance, et al., eds., Academic, New York (1979), page 31.

  19. 19. See, for example, N. F. Mott, E. A. Davis, Electronic Processes in Non‐Crystalline Media, Oxford U.P. (1971), page 152.

  20. 20. L. B. Schein, Phys. Rev. B 15, 1024 (1977).https://doi.org/PLRBAQ

  21. 21. L. B. Schein, A. R. McGhie, Phys. Rev. B70, 1631 (1979).

  22. 22. S. Efrima, H. Metiu, J. Chem. Phys. 69, 5113 (1978); https://doi.org/JCPSA6
    S. Efrima, H. Metiu, Chem. Phys. Lett. 60, 226 (1979).https://doi.org/CHPLBC

More about the Authors

Charles B. Duke. Xerox Webster Research Center, Rochester, New York.

L. B. Schein. Xerox Webster Research Center, Rochester, New York.

This Content Appeared In
pt-cover_1980_02.jpeg

Volume 33, Number 2

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.