Discover
/
Article

Organic solids: is energy‐band theory enough?

FEB 01, 1980
Their increasing usefulness, their chemical flexibility, and the inability of traditional models to explain their electronic properties makes the study of organic solids a fascinating frontier of solid‐state physics.
Charles B. Duke
L. B. Schein

The study of the electronic properties of organic solids is a major new frontier in solid state physics. On the practical side, organic solids provide electronic and optical materials whose properties can be tailored to suit specific applications. They also pose continuing challenges to fundamental concepts because they afford unique model systems for establishing the bounds of validity for the traditional energy‐band models that have proven so successful in describing the electronic properties of inorganic metals and semiconductors.

This article is only available in PDF format

References

  1. 1. See, for example C. Kittel, Quantum Theory of Solids, Wiley, New York, (1963);
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic, New York (1973).

  2. 2. C. B. Duke, Mol. Cryst. Liq. Cryst. 50, 63 (1979); https://doi.org/MCLCA5
    C. B. Duke, Surf. Sci. 70, 674 (1978); https://doi.org/SUSCAS
    C. B. Duke, W. R. Salaneck, T. J. Fabish, J. J. Ritsko, H. R. Thomas, A. Paton, Phys. Rev. B 18, 5717 (1978).https://doi.org/PLRBAQ

  3. 3. P. W. Anderson, Rev. Mod. Phys., 50, 191 (1978);
    D. Weaire, V. Srivastava in Amorphous and Liquid Semiconductors, W. E. Spear, ed., G. G. Stevenson, Dundee (1977) page 286.

  4. 4. J. S. Miller, A. J. Epstein, eds., Synthesis and Properties of Low‐Dimensional Solids, New York Academy of Sciences, New York (1978).

  5. 5. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959); https://doi.org/APNYA6
    J. Yamashita, T. Kurosawa, Phys. Chem. Solids 5, 34 (1958); https://doi.org/PCSOA7
    J. Yamashita, T. Kurosawa, J. Phys. Soc. Jap. 15, 802 (1960).

  6. 6. R. W. Munn, W. Siebrand, J. Chem. Phys. 52, 6391 (1970); https://doi.org/JCPSA6
    R. W. Munn, W. Siebrand, Chem. Phys. Lett. 9, 655 (1969).https://doi.org/CHPLBC

  7. 7. L. B. Schein, Chem. Phys. Lett. 48, 571 (1977); https://doi.org/CHPLBC
    L. B. Schein, A. R. McGhie, Chem. Phys. Lett. 62, 356 (1979).https://doi.org/CHPLBC

  8. 8. A. Madhukar, W. Post, Phys. Rev. Lett. 39, 1424 (1977). https://doi.org/PRLTAO
    H. Sumi, Solid State Commun. 28, 309 (1978); https://doi.org/SSCOA4
    H. Sumi, 29, 495 (1979);
    H. Sumi, J. Chem. Phys. 70, 3775 (1979).

  9. 9. L. B. Schein, C. B. Duke, A. R. McGhie, Phys. Rev. Lett. 40, 197 (1978).https://doi.org/PRLTAO

  10. 10. N. F. Mott, Rev. Mod. Phys. 50, 203 (1978) and references therein.https://doi.org/RMPHAT

  11. 11. C. B. Duke, W. R. Salaneck, A. Paton, K. S. Liang, N. O. Lipari, R. Zallen, in Structure and Excitations of Amorphous Solids, G. Lucovsky, F. L. Galeener, eds, American Institute of Physics, New York (1976), page 23;
    W. D. Grobman, E. E. Koch, in Photoemission of Solids, L. Ley, M. Cardona, eds. Springer, Berlin (1979), page 261.

  12. 12. W. R. Salaneck, Phys. Rev. Lett. 40, 60 (1978).https://doi.org/PRLTAO

  13. 13. B. Reimer, H. Bassler, Phys. Status Solidi (A) 51, 445 (1979).https://doi.org/PSSABA

  14. 14. H. Meier, Organic Semiconductors Verlag Chemie, Weinheim (1974).

  15. 15. C. B. Duke, T. J. Fabish, J. Appl. Phys. 49, 315 (1978).https://doi.org/JAPIAU

  16. 16. W. D. Gill, in Photoconductivity and Related Phenomena, J. Mort, D. M. Pai, eds., Elsevier, Amsterdam (1976), page 303.

  17. 17. J. M. Pearson, Pure and Appl. Chem. 49, 463 (1977); https://doi.org/PACHAS
    G. Pfister, Phys. Rev. B 16, 3676 (1977).https://doi.org/PLRBAQ

  18. 18. C. B. Duke, in Tunneling in Biological Systems, B. Chance, et al., eds., Academic, New York (1979), page 31.

  19. 19. See, for example, N. F. Mott, E. A. Davis, Electronic Processes in Non‐Crystalline Media, Oxford U.P. (1971), page 152.

  20. 20. L. B. Schein, Phys. Rev. B 15, 1024 (1977).https://doi.org/PLRBAQ

  21. 21. L. B. Schein, A. R. McGhie, Phys. Rev. B70, 1631 (1979).

  22. 22. S. Efrima, H. Metiu, J. Chem. Phys. 69, 5113 (1978); https://doi.org/JCPSA6
    S. Efrima, H. Metiu, Chem. Phys. Lett. 60, 226 (1979).https://doi.org/CHPLBC

More about the Authors

Charles B. Duke. Xerox Webster Research Center, Rochester, New York.

L. B. Schein. Xerox Webster Research Center, Rochester, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1980_02.jpeg

Volume 33, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.