Discover
/
Article

Optical Processes in Microcavities

JUN 01, 1993
A new generation of optical microresonators is making possible the exploration of quantum electrodynamic phenomena in condensed matter systems and providing microlasers with a wide range of potential applications.
Yoshihiso Yamamoto
Richart E. Slusher

Studies of optical microresonators with dimensions between 0.1 and 10 microns are now under way in a wide variety of condensed matter systems. Ideally, one can isolate a single mode of the optical field in a cube a halfwavelength on a side with perfectly reflecting walls. Liquid droplets, polymer spheres and semiconductor Fabry‐Perot microcavities with dielectric mirrors are examples of microresonators with which one can approach this ideal limit and nearly isolate a few modes of the electromagnetic field from the continuum of surrounding free‐space modes.

This article is only available in PDF format

References

  1. 1. S. E. Morin, Q. Wu, T. W. Mossberg, Optics & Photonics News, August 1992, p. 8.

  2. 2. F. DeMartini, G. R. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988).https://doi.org/PRLTAO

  3. 3. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, M. Suzuki, Opt. Quantum Electron. 24, S245 (1992).

  4. 4. T. Baba, T. Hamano, F. Koyama, K. Iga, IEEE J. Quantum Electron. 27, 1347 (1991).https://doi.org/IEJQA7

  5. 5. G. Björk, Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).https://doi.org/IEJQA7

  6. 6. Y. Yamamoto, G. Björk, H. Heimann, R. Horowicz, in Optics of Semiconductor Nanostructures, F. Henneberger, S. Schmitt‐Rink, E. O. Göbel, eds., VCH, Weinheim, Germany (1993), p. 275.

  7. 7. Y. Yamamoto, S. Machida, G. Björk, Phys. Rev. A 44, 657 (1991).https://doi.org/PLRAAN

  8. 8. F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, M. Ikeda, Appl. Phys. Lett. 62, 443 (1993).https://doi.org/APPLAB

  9. 9. Y. Yamamoto, S. Machida, K. Igeta, Y. Horikoshi, in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, E. Wolf, eds., Plenum, New York (1989), p. 1249.

  10. 10. F. DeMartini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, Phys. Rev. A 43, 2480 (1991).https://doi.org/PLRAAN

  11. 11. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, G. J. Zydzik, Appl. Phys. Lett. 61, 1381 (1992).https://doi.org/APPLAB

  12. 12. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).https://doi.org/OPLEDP

  13. 13. A. J. Campillo, J. D. Eversole, H.‐B. Lin, Phys. Rev. Lett. 67, 437 (1991).https://doi.org/PRLTAO

  14. 14. M. Kuwata‐Gonokami, K. Takeda, H. Yasuda, K. Ema, Jpn. J. Appl. Phys. Lett. 31, 99 (1992).

  15. 15. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).https://doi.org/APPLAB

  16. 16. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. (1993), to be published.

  17. 17. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, Electron. Lett. 25, 1377 (1989).https://doi.org/ELLEAK

  18. 18. R. S. Geels, L. A. Coldren, Electron. Lett. 27, 1359 (1991).https://doi.org/ELLEAK

  19. 19. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun‐Ek, D. L. Coblentz, S. J. Pearton, Electron. Lett. 28, 1010 (1992).https://doi.org/ELLEAK

  20. 20. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 347, 539 (1990).https://doi.org/NATUAS

  21. 21. M. Orenstein, A. C. Von Lehmen, C. Chang‐Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, Electron. Lett. 27, 437 (1990).https://doi.org/ELLEAK

  22. 22. D. Vakshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, submitted to Appl. Phys. Lett. (available from Slusher).

  23. 23. H. O. Everitt, Optics & Photonics News, November 1992, p. 20
    P. L. Gourley, M. E. Warren, G. A. Vawter, T. M. Brennan, B. E. Hammons, Appl. Phys. Lett. 60, 2714 (1992).https://doi.org/APPLAB

More about the Authors

Yoshihiso Yamamoto. Stanford University, NTT Basic Research Laboratory, Tokyo, Japan.

Richart E. Slusher. AT&T Bell Laboratories, Murray Hill, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1993_06.jpeg

Volume 46, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.