Discover
/
Article

Optical Processes in Microcavities

JUN 01, 1993
A new generation of optical microresonators is making possible the exploration of quantum electrodynamic phenomena in condensed matter systems and providing microlasers with a wide range of potential applications.

DOI: 10.1063/1.881356

Yoshihiso Yamamoto
Richart E. Slusher

Studies of optical microresonators with dimensions between 0.1 and 10 microns are now under way in a wide variety of condensed matter systems. Ideally, one can isolate a single mode of the optical field in a cube a halfwavelength on a side with perfectly reflecting walls. Liquid droplets, polymer spheres and semiconductor Fabry‐Perot microcavities with dielectric mirrors are examples of microresonators with which one can approach this ideal limit and nearly isolate a few modes of the electromagnetic field from the continuum of surrounding free‐space modes.

References

  1. 1. S. E. Morin, Q. Wu, T. W. Mossberg, Optics & Photonics News, August 1992, p. 8.

  2. 2. F. DeMartini, G. R. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988).https://doi.org/PRLTAO

  3. 3. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, M. Suzuki, Opt. Quantum Electron. 24, S245 (1992).

  4. 4. T. Baba, T. Hamano, F. Koyama, K. Iga, IEEE J. Quantum Electron. 27, 1347 (1991).https://doi.org/IEJQA7

  5. 5. G. Björk, Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).https://doi.org/IEJQA7

  6. 6. Y. Yamamoto, G. Björk, H. Heimann, R. Horowicz, in Optics of Semiconductor Nanostructures, F. Henneberger, S. Schmitt‐Rink, E. O. Göbel, eds., VCH, Weinheim, Germany (1993), p. 275.

  7. 7. Y. Yamamoto, S. Machida, G. Björk, Phys. Rev. A 44, 657 (1991).https://doi.org/PLRAAN

  8. 8. F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, M. Ikeda, Appl. Phys. Lett. 62, 443 (1993).https://doi.org/APPLAB

  9. 9. Y. Yamamoto, S. Machida, K. Igeta, Y. Horikoshi, in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, E. Wolf, eds., Plenum, New York (1989), p. 1249.

  10. 10. F. DeMartini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, Phys. Rev. A 43, 2480 (1991).https://doi.org/PLRAAN

  11. 11. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, G. J. Zydzik, Appl. Phys. Lett. 61, 1381 (1992).https://doi.org/APPLAB

  12. 12. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).https://doi.org/OPLEDP

  13. 13. A. J. Campillo, J. D. Eversole, H.‐B. Lin, Phys. Rev. Lett. 67, 437 (1991).https://doi.org/PRLTAO

  14. 14. M. Kuwata‐Gonokami, K. Takeda, H. Yasuda, K. Ema, Jpn. J. Appl. Phys. Lett. 31, 99 (1992).

  15. 15. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).https://doi.org/APPLAB

  16. 16. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. (1993), to be published.

  17. 17. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, Electron. Lett. 25, 1377 (1989).https://doi.org/ELLEAK

  18. 18. R. S. Geels, L. A. Coldren, Electron. Lett. 27, 1359 (1991).https://doi.org/ELLEAK

  19. 19. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun‐Ek, D. L. Coblentz, S. J. Pearton, Electron. Lett. 28, 1010 (1992).https://doi.org/ELLEAK

  20. 20. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 347, 539 (1990).https://doi.org/NATUAS

  21. 21. M. Orenstein, A. C. Von Lehmen, C. Chang‐Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, Electron. Lett. 27, 437 (1990).https://doi.org/ELLEAK

  22. 22. D. Vakshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, submitted to Appl. Phys. Lett. (available from Slusher).

  23. 23. H. O. Everitt, Optics & Photonics News, November 1992, p. 20
    P. L. Gourley, M. E. Warren, G. A. Vawter, T. M. Brennan, B. E. Hammons, Appl. Phys. Lett. 60, 2714 (1992).https://doi.org/APPLAB

More about the Authors

Yoshihiso Yamamoto. Stanford University, NTT Basic Research Laboratory, Tokyo, Japan.

Richart E. Slusher. AT&T Bell Laboratories, Murray Hill, New Jersey.

This Content Appeared In
pt-cover_1993_06.jpeg

Volume 46, Number 6

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.