Optical Processes in Microcavities
DOI: 10.1063/1.881356
Studies of optical microresonators with dimensions between 0.1 and 10 microns are now under way in a wide variety of condensed matter systems. Ideally, one can isolate a single mode of the optical field in a cube a halfwavelength on a side with perfectly reflecting walls. Liquid droplets, polymer spheres and semiconductor Fabry‐Perot microcavities with dielectric mirrors are examples of microresonators with which one can approach this ideal limit and nearly isolate a few modes of the electromagnetic field from the continuum of surrounding free‐space modes.
References
1. S. E. Morin, Q. Wu, T. W. Mossberg, Optics & Photonics News, August 1992, p. 8.
2. F. DeMartini, G. R. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988).https://doi.org/PRLTAO
3. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, M. Suzuki, Opt. Quantum Electron. 24, S245 (1992).
4. T. Baba, T. Hamano, F. Koyama, K. Iga, IEEE J. Quantum Electron. 27, 1347 (1991).https://doi.org/IEJQA7
5. G. Björk, Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).https://doi.org/IEJQA7
6. Y. Yamamoto, G. Björk, H. Heimann, R. Horowicz, in Optics of Semiconductor Nanostructures, F. Henneberger, S. Schmitt‐Rink, E. O. Göbel, eds., VCH, Weinheim, Germany (1993), p. 275.
7. Y. Yamamoto, S. Machida, G. Björk, Phys. Rev. A 44, 657 (1991).https://doi.org/PLRAAN
8. F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, M. Ikeda, Appl. Phys. Lett. 62, 443 (1993).https://doi.org/APPLAB
9. Y. Yamamoto, S. Machida, K. Igeta, Y. Horikoshi, in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, E. Wolf, eds., Plenum, New York (1989), p. 1249.
10. F. DeMartini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, Phys. Rev. A 43, 2480 (1991).https://doi.org/PLRAAN
11. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, G. J. Zydzik, Appl. Phys. Lett. 61, 1381 (1992).https://doi.org/APPLAB
12. H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).https://doi.org/OPLEDP
13. A. J. Campillo, J. D. Eversole, H.‐B. Lin, Phys. Rev. Lett. 67, 437 (1991).https://doi.org/PRLTAO
14. M. Kuwata‐Gonokami, K. Takeda, H. Yasuda, K. Ema, Jpn. J. Appl. Phys. Lett. 31, 99 (1992).
15. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).https://doi.org/APPLAB
16. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. (1993), to be published.
17. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, Electron. Lett. 25, 1377 (1989).https://doi.org/ELLEAK
18. R. S. Geels, L. A. Coldren, Electron. Lett. 27, 1359 (1991).https://doi.org/ELLEAK
19. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun‐Ek, D. L. Coblentz, S. J. Pearton, Electron. Lett. 28, 1010 (1992).https://doi.org/ELLEAK
20. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 347, 539 (1990).https://doi.org/NATUAS
21. M. Orenstein, A. C. Von Lehmen, C. Chang‐Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, Electron. Lett. 27, 437 (1990).https://doi.org/ELLEAK
22. D. Vakshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, submitted to Appl. Phys. Lett. (available from Slusher).
23. H. O. Everitt, Optics & Photonics News, November 1992, p. 20
P. L. Gourley, M. E. Warren, G. A. Vawter, T. M. Brennan, B. E. Hammons, Appl. Phys. Lett. 60, 2714 (1992).https://doi.org/APPLAB
More about the Authors
Yoshihiso Yamamoto. Stanford University, NTT Basic Research Laboratory, Tokyo, Japan.
Richart E. Slusher. AT&T Bell Laboratories, Murray Hill, New Jersey.