Discover
/
Article

Optical Probes in the Quantum Hall Regime

JUN 01, 1993
Luminescence and inelastic light scattering provide new ways to study the properties of a two‐dimensional electron gas and have recently shed light on the collective states responsible for the fractional quantum Hall effect.
Arto Nurmikko
Aron Pinczuk

Semiconductor nanostructures in which mobile electrons reside in a specific spatial region, such as a thin quantum well formed by heterojunction layers on the order of 100 Å in thickness, constitute a particularly striking physical system. The mobile electrons in such a system form a “two‐dimensional electron gas.” In a uniform semiconductor electrons scatter off the ionized donor dopants, but in a two‐dimensional electron gas the electrons can be separate from the dopants and enjoy extraordinarily long mean free paths (many micrometers) at cryogenic temperatures. In the past dozen years or so, this unique property has provided an enormously rich field for the study of electron transport phenomena, ranging from ballistic motion in small device structures to many‐electron correlations in strong magnetic fields

This article is only available in PDF format

References

  1. 1. R. E. Prange, S. M. Girvin, eds., The Quantum Hall Effect, Springer‐Verlag, New York (1987).

  2. 2. A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, K. W. West, “Observation of Collective Excitations in the Fractional Quantum Hall Effect,” preprint, AT&T Bell Laboratories, Murray Hill, N.J., January 1993.

  3. 3. M. S. Skolnick, J. M. Rorison, K. J. Nash, D. J. Mowbray, P. R. Tapster, S. J. Bass, A. D. Pitt, Phys. Rev. Lett. 55, 2130 (1987).https://doi.org/PRLTAO

  4. 4. G. Livescu, D. A. B. Miller, D. S. Chemla, M. Ramaswamy, T. Y. Chang, N. Sauer, A. C. Gossard, J. H. English, IEEE J. Quantum Electron. 24, 1677 (1988).https://doi.org/IEJQA7

  5. 5. G. D. Mahan, Phys. Rev. 163, 163 (1967).https://doi.org/PHRVAO

  6. 6. W. Chen, M. Fritze, A. V. Nurmikko, J. M. Hong, L. Chang, Phys. Rev. B 43, 10388 (1991); https://doi.org/PRBMDO
    W. Chen, M. Fritze, A. V. Nurmikko, J. M. Hong, L. Chang, 45, 8464 (1992).

  7. 7. D. Heiman, B. B. Goldberg, A. Pinczuk, C. W. Tu, A. C. Gossard, J. H. English, Phys. Rev. Lett. 61, 605 (1988).

  8. 8. B. B. Goldberg, D. Heiman, A. Pinczuk, L. Pfeiffer, K. West, Phys. Rev. Lett. 65, 641 (1990).https://doi.org/PRLTAO

  9. 9. W. Chen, M. Fritze, A. V. Nurmikko, D. Ackley, C. Colvard, H. Lee, Phys. Rev. Lett. 64, 2434 (1990).https://doi.org/PRLTAO

  10. 10. A. J. Turberfield, S. R. Haynes, P. A. Wright, R. A. Ford, R. G. Clark, J. F. Ryan, J. J. Harris, C. T. Foxon, Phys. Rev. Lett. 65, 637 (1990).https://doi.org/PRLTAO

  11. 11. H. Buhmann, W. Joss, K. vonKlitzing, I. V. Kukushkin, G. Martinez, A. S. Plaut, K. Ploog, V. B. Timofeev, Phys. Rev. Lett. 65, 1056 (1990).https://doi.org/PRLTAO

  12. 12. I. V. Kukushkin, N. J. Pulsford, K. vonKlitzing, K. Ploog, R. N. Haug, S. Koch, V. B. Timofeev, Europhys. Lett. 18, 63 (1992).https://doi.org/EULEEJ

  13. 13. C. Kallin, B. I. Halperin, Phys. Rev. B 30, 5655 (1984).https://doi.org/PRBMDO

  14. 14. A. Pinczuk, D. Heiman, S. Schmitt‐Rink, S. L. Chuang, C. Kallin, J. P. Valladares, B. S. Dennis, L. N. Pfeiffer, K. W. West, in Proc. 20th Int. Conf. on Physics of Semiconductors, E. M. Anastassakis, J. D. Joannopoulos, eds., World Scientific, Singapore (1990), p. 1045.

  15. 15. D. C. Tsui, H. L. Stormer, A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).https://doi.org/PRLTAO

More about the Authors

Arto Nurmikko. Brown University, Providence, Rhode Island.

Aron Pinczuk. AT&T Bell Laboratories, Murray Hill, New Jersey.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1993_06.jpeg

Volume 46, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.