Optical methods for the study of radio‐frequency resonances
SEP 01, 1967
The double resonance method and optical pumping technique have led to advances in the study of nuclear spins and magnetic moments, electron magnetic moments, multiple‐quantum transitions, and nuclear hyperfine interactions. Excitation by electron impact has permitted the study of atomic levels not accessible with resonance radiation.
DURING MY FIRST YEAR as a student at the Ecole Normale Supérieure in Paris, our professor, Eugene Bloch, introduced us to quantum physics, which was seldom taught in France at that time. Like him, I was from Alsace and spoke German. He strongly advised me to read Arnold Sommerfeld’s excellent book Atombau und Spektrallinien. When reading this book, I was particularly interested in the application of the principle of conservation of angular momentum in interactions between electromagnetic radiation and matter—an application that guided A. Rubinowicz to the interpretation of the selection rules for the angular momentum quantum number and for polarization in the Zeeman effect. On the assumption of light quanta, this principle led to attributing an angular momentum to the photons or according to whether the light was circularly polarized to the right or to the left natural light being a mixture of the two types of photon.
This article is only available in PDF format
References
1. A. Sommerfeld, Atombau und Spektrallinien (2nd ed.) Wieweg, Braunschweig (1922).
22. H. G. Robinson, E. S. Ensberg, H. G. Dehmelt, Bull. Am. Phys. Soc. 3, 9 (1958).https://doi.org/BAPSA6
23. J. Margerie, Compt. Rend. 241, 865 (1955); https://doi.org/COREAF P. Bender, Thesis, Princeton University (1956); F. Hartmann, M. Rambosson, J. Brossel, A. Kastler, Compt. Rend. 246, 1522 (1958).https://doi.org/COREAF
24. C. Cohen‐Tannoudji, J. Brossel, A. Kastler, Compt. Rend. 245, 1027 (1957).https://doi.org/COREAF
25. M. Arditi, Ann. Phys. (Paris) 5, 973 (1960); https://doi.org/ANPHAJ Compagnie Générale de Télégraphie sans Fil (CSF) Notice n. 1602 (1964); L. Malnar, J. P. Mosnier, Ann. Radioelect. 16, 63 (1961); P. L. Bender, p. 621 in Proceedings of the 9th Colloque AMPERE (Pisa, 1960); A. L. Bloom, Appl. Opt. 1, 61 (1962).https://doi.org/APOPAI
28. N. Rollet, J. Brossel, A. Kastler, Compt. Rend. 242, 240 (1956).https://doi.org/COREAF
29. M. A. Guiochon, J. E. Blamont, J. Brossel, Compt. Rend. 243, 1859 (1956); https://doi.org/COREAF M. A. Guiochon, J. E. Blamont, J. Brossel, J. Phys. Radium 18, 99 (1957).https://doi.org/JPRAAJ
36. J. Brossel, A. Kastler, J. M. Winter, J. Phys. Radium 13, 668 (1952).https://doi.org/JPRAAJ
37. J. Brossel, B. Cagnac, A. Kastler, Compt. Rend. 237, 984 (1953); https://doi.org/COREAF J. Brossel, B. Cagnac, A. Kastler, J. Phys. Radium 15, 6 (1954).https://doi.org/JPRAAJ
40. P. A. Franken, R. Sands, J. Hobart, Phys. Rev. Letters 1, 316 (1958); https://doi.org/PRLTAO R. Novick, H. E. Peters, Phys. Rev. Letters 1, 54,152 (1958).https://doi.org/PRLTAO
41. M. A. Bouchiat, Publications Scientiflques du Ministere de l’Air N. T. 146 (1965); M. A. Bouchiat, J. Brossel, Phys. Rev. 147, 41 (1966).https://doi.org/PHRVAO
42. F. Bitter, R. F. Lacey, B. Richter, Rev. Mod. Phys. 25, 174 (1953).https://doi.org/RMPHAT
45. C. Cohen‐Tannoudji, J. Phys. Radium 24, 653 (1963); C. Cohen‐Tannoudji, J. Brossel, Compt. Rend. 258, 6119 (1964); https://doi.org/COREAF J. C. Lehmann, J. Brossel, Compt. Rend. 262, 624 (1966).
46. J. C. Lehmann, Thesis, Paris, 1966; J. C. Lehmann, J. Brossel, Compt. Rend. 258, 869 (1964); https://doi.org/COREAF M. Leduc, J. C. Lehmann, Compt. Rend. 262, 736 (1966).
47. J. C. Lehmann, J. Phys. Radium 25, 809 (1964).
48. A. Omont, J. Phys. Radium 26, 26 (1965); J. P. Faroux, J. Brossel, Compt. Rend. 261, 3092 (1965); https://doi.org/COREAF J. P. Faroux, J. Brossel, 262, 41 (1966); https://doi.org/COREAF, Compt. Rend. J. P. Faroux, Compt. Rend. 262, 1385 (1966).
49. F. Grossetête, J. Phys. Radium 25, 383 (1964); F. Grossetête, Compt. Rend. 259, 3211 (1940); https://doi.org/COREAF F. Grossetête, 260, 3327 (1965).https://doi.org/COREAF, Compt. Rend.
52. J. P. Barrat, C. Cohen‐Tannoudji, Compt. Rend. 252, 93 (1961); https://doi.org/COREAF J. P. Barrat, C. Cohen‐Tannoudji, J. Phys. Radium 22, 329 (1961).https://doi.org/JPRAAJ
53. Op. cit. ref. 51; A. Kastler, J. Opt. Soc. Am. 53, 902 (1963).https://doi.org/JOSAAH
54. E. B. Alexandrov, A. M. Bonch‐Bruevich, N. N. Konstin, V. A. Khodovoi, JETP Letters 3, 53 (1966).https://doi.org/JTPLA2
55. N. Polonsky, C. Cohen‐Tannoudji, J. Phys. Radium 26, 409 (1965); N. Polonsky, C. Cohen‐Tannoudji, Compt. Rend. 260, 5231 (1965); https://doi.org/COREAF N. Polonsky, C. Cohen‐Tannoudji, 261, 369 (1965); https://doi.org/COREAF, Compt. Rend. C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 261, 5400 (1965).https://doi.org/COREAF
56. C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 262, 268 (1966).
57. C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 262, 37 (1966).
58. J. Margerie, Publications Scientifiques du Ministère de l’Air N. T. 155 (1966); J. Brossel, J. Margerie, p. 535 in Paramagnetic Resonance, Vol. 2, (W. Low, ed.) Academic Press, New York (1963); N. V. Karlov, J. Margerie, M. D’Aubigné, J. Phys. Radium 24, 717 (1963); See also: A Kastler in Lasers and Applications (W.S.C. Chang, ed.) Ohio State University, Columbus (1963).
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.