Discover
/
Article

Optical methods for the study of radio‐frequency resonances

SEP 01, 1967
The double resonance method and optical pumping technique have led to advances in the study of nuclear spins and magnetic moments, electron magnetic moments, multiple‐quantum transitions, and nuclear hyperfine interactions. Excitation by electron impact has permitted the study of atomic levels not accessible with resonance radiation.

DOI: 10.1063/1.3034481

Alfred Kastler

DURING MY FIRST YEAR as a student at the Ecole Normale Supérieure in Paris, our professor, Eugene Bloch, introduced us to quantum physics, which was seldom taught in France at that time. Like him, I was from Alsace and spoke German. He strongly advised me to read Arnold Sommerfeld’s excellent book Atombau und Spektrallinien. When reading this book, I was particularly interested in the application of the principle of conservation of angular momentum in interactions between electromagnetic radiation and matter—an application that guided A. Rubinowicz to the interpretation of the selection rules for the angular momentum quantum number and for polarization in the Zeeman effect. On the assumption of light quanta, this principle led to attributing an angular momentum to the photons +h/2π or −h/2π, according to whether the light was circularly polarized to the right +) or to the left ), natural light being a mixture of the two types of photon.

References

  1. 1. A. Sommerfeld, Atombau und Spektrallinien (2nd ed.) Wieweg, Braunschweig (1922).

  2. 2. A. Rubinowicz, Physikal. Z. 19, 442, 465 (1918).https://doi.org/PHZTAO

  3. 3. W. Hanle, Naturwiss. 19, 375 (1931), https://doi.org/NATWAY
    R. Bär, Naturwiss 19, 463 (1931).

  4. 4. A. Kastler, Compt. Rend. 193, 1075 (1931).https://doi.org/COREAF

  5. 5. J. Cabannes, J. Phys. Radium 2, 381 (1931).https://doi.org/JPRAAJ

  6. 6. C. V. Raman, S. Bhagavantam, Indian J. Phys. 6, 353 (1931).https://doi.org/IJPYAS

  7. 7. A. Kastler, J. Phys. Radium, 2, 159 (1931).https://doi.org/JPRAAJ

  8. 8. R. Frisch, Z. Physik 61, 626 (1930).https://doi.org/ZEPYAA

  9. 9. A. Kastler, J. Phys. Radium 4, 406 (1933).https://doi.org/JPRAAJ

  10. 10. C. Fuchtbauer, Physikal. Z. 21, 635 (1920).https://doi.org/PHZTAO

  11. 11. A. C. G. Mitchell, M. W. Zemansky, p. 44 in Resonance Radiation and Excited Atoms, Cambridge University Press (1934).

  12. 12. A. Kastler, Ann. Phys. (Paris) 6, 663 (1936).https://doi.org/ANPHAJ

  13. 13. J. M. B. Kellogg, S. Millman, Rev. Mod. Phys. 18, 323 (1946).https://doi.org/RMPHAT

  14. 14. W. E. Lamb Jr, Nobel Lecture (1955);
    Rept. Progr. Phys. 14, 23 (1951).https://doi.org/RPPHAG

  15. 15. F. Bitter, Phys. Rev. 76, 833 (1949).https://doi.org/PHRVAO

  16. 16. M. H. L. Pryce, Phys. Rev. 77, 136 (1950).https://doi.org/PHRVAO

  17. 17. W. Heisenberg, Z. Physik 31, 617 (1926).https://doi.org/ZEPYAA

  18. 18. E. Fermi, F. Rasetti, Z. Physik 33, 246 (1925).https://doi.org/ZEPYAA

  19. 19. J. Franck, Nobel Lecture (1925), p. 98 in Nobel Lectures in Physics 1922–1941, Elsevier.

  20. 20. H. W. B. Skinner, E. T. S. Appleyard, Proc. Roy. Soc. A117, 224 (1928).

  21. 21. A. Kastler, J. Phys. Radium 11, 255 (1950).https://doi.org/JPRAAJ

  22. 22. H. G. Robinson, E. S. Ensberg, H. G. Dehmelt, Bull. Am. Phys. Soc. 3, 9 (1958).https://doi.org/BAPSA6

  23. 23. J. Margerie, Compt. Rend. 241, 865 (1955); https://doi.org/COREAF
    P. Bender, Thesis, Princeton University (1956);
    F. Hartmann, M. Rambosson, J. Brossel, A. Kastler, Compt. Rend. 246, 1522 (1958).https://doi.org/COREAF

  24. 24. C. Cohen‐Tannoudji, J. Brossel, A. Kastler, Compt. Rend. 245, 1027 (1957).https://doi.org/COREAF

  25. 25. M. Arditi, Ann. Phys. (Paris) 5, 973 (1960); https://doi.org/ANPHAJ
    Compagnie Générale de Télégraphie sans Fil (CSF) Notice n. 1602 (1964);
    L. Malnar, J. P. Mosnier, Ann. Radioelect. 16, 63 (1961);
    P. L. Bender, p. 621 in Proceedings of the 9th Colloque AMPERE (Pisa, 1960);
    A. L. Bloom, Appl. Opt. 1, 61 (1962).https://doi.org/APOPAI

  26. 26. J. Brossel, Ann. Phys. (Paris) 7, 622 (1952); https://doi.org/ANPHAJ
    J. Brossel, F. Bitter, Phys. Rev. 86, 308 (1952).https://doi.org/PHRVAO

  27. 27. J. E. Blamont, Ann. Phys. (Paris) 2, 551 (1957).https://doi.org/ANPHAJ

  28. 28. N. Rollet, J. Brossel, A. Kastler, Compt. Rend. 242, 240 (1956).https://doi.org/COREAF

  29. 29. M. A. Guiochon, J. E. Blamont, J. Brossel, Compt. Rend. 243, 1859 (1956); https://doi.org/COREAF
    M. A. Guiochon, J. E. Blamont, J. Brossel, J. Phys. Radium 18, 99 (1957).https://doi.org/JPRAAJ

  30. 30. J. P. Barrat, J. Phys. Radium 20, 541,633 (1959).https://doi.org/JPRAAJ

  31. 31. J. P. Barrat, Proc. Roy. Soc. A263, 371 (1961).

  32. 32. C. Cohen‐Tannoudji, p. 114 in Quantum Electronics II, Columbia University Press, New York (1961).

  33. 33. J. C. Pebay‐Peyroula, J. Phys. Radium 20, 669, 721 (1959).https://doi.org/JPRAAJ

  34. 34. P. A. Franken, Phys. Rev. 121, 508 (1961).https://doi.org/PHRVAO

  35. 35. J. P. Descoubes, Compt. Rend. 259, 327, 3733 (1964); https://doi.org/COREAF
    J. P. Descoubes, 261, 916 (1965); https://doi.org/COREAF , Compt. Rend.
    Thesis, Paris, 1966.

  36. 36. J. Brossel, A. Kastler, J. M. Winter, J. Phys. Radium 13, 668 (1952).https://doi.org/JPRAAJ

  37. 37. J. Brossel, B. Cagnac, A. Kastler, Compt. Rend. 237, 984 (1953); https://doi.org/COREAF
    J. Brossel, B. Cagnac, A. Kastler, J. Phys. Radium 15, 6 (1954).https://doi.org/JPRAAJ

  38. 38. J. M. Winter, Ann. Phys. (Paris) 4, 745 (1959).https://doi.org/ANPHAJ

  39. 39. H. G. Dehmelt, Phys. Rev. 109, 381 (1958).https://doi.org/PHRVAO

  40. 40. P. A. Franken, R. Sands, J. Hobart, Phys. Rev. Letters 1, 316 (1958); https://doi.org/PRLTAO
    R. Novick, H. E. Peters, Phys. Rev. Letters 1, 54,152 (1958).https://doi.org/PRLTAO

  41. 41. M. A. Bouchiat, Publications Scientiflques du Ministere de l’Air N. T. 146 (1965);
    M. A. Bouchiat, J. Brossel, Phys. Rev. 147, 41 (1966).https://doi.org/PHRVAO

  42. 42. F. Bitter, R. F. Lacey, B. Richter, Rev. Mod. Phys. 25, 174 (1953).https://doi.org/RMPHAT

  43. 43. B. Cagnac, Ann. Phys. (Paris) 6, 467 (1960); https://doi.org/ANPHAJ
    J. C. Lehmann, R. Barbé, Compt. Rend. 257, 3152 (1963).https://doi.org/COREAF

  44. 44. W. Franzen, Phys. Rev. 115, 850 (1959).https://doi.org/PHRVAO

  45. 45. C. Cohen‐Tannoudji, J. Phys. Radium 24, 653 (1963);
    C. Cohen‐Tannoudji, J. Brossel, Compt. Rend. 258, 6119 (1964); https://doi.org/COREAF
    J. C. Lehmann, J. Brossel, Compt. Rend. 262, 624 (1966).

  46. 46. J. C. Lehmann, Thesis, Paris, 1966;
    J. C. Lehmann, J. Brossel, Compt. Rend. 258, 869 (1964); https://doi.org/COREAF
    M. Leduc, J. C. Lehmann, Compt. Rend. 262, 736 (1966).

  47. 47. J. C. Lehmann, J. Phys. Radium 25, 809 (1964).

  48. 48. A. Omont, J. Phys. Radium 26, 26 (1965);
    J. P. Faroux, J. Brossel, Compt. Rend. 261, 3092 (1965); https://doi.org/COREAF
    J. P. Faroux, J. Brossel, 262, 41 (1966); https://doi.org/COREAF , Compt. Rend.
    J. P. Faroux, Compt. Rend. 262, 1385 (1966).

  49. 49. F. Grossetête, J. Phys. Radium 25, 383 (1964);
    F. Grossetête, Compt. Rend. 259, 3211 (1940); https://doi.org/COREAF
    F. Grossetête, 260, 3327 (1965).https://doi.org/COREAF , Compt. Rend.

  50. 50. H. G. Dehmelt, Phys. Rev. 105, 1924 (1957); https://doi.org/PHRVAO
    W. E. Bell, A. L. Bloom, Phys. Rev. 107, 1559 (1957).https://doi.org/PHRVAO

  51. 51. C. Cohen‐Tannoudji, Ann. Phys. (Paris) 7, 423, 469 (1962).https://doi.org/ANPHAJ

  52. 52. J. P. Barrat, C. Cohen‐Tannoudji, Compt. Rend. 252, 93 (1961); https://doi.org/COREAF
    J. P. Barrat, C. Cohen‐Tannoudji, J. Phys. Radium 22, 329 (1961).https://doi.org/JPRAAJ

  53. 53. Op. cit. ref. 51;
    A. Kastler, J. Opt. Soc. Am. 53, 902 (1963).https://doi.org/JOSAAH

  54. 54. E. B. Alexandrov, A. M. Bonch‐Bruevich, N. N. Konstin, V. A. Khodovoi, JETP Letters 3, 53 (1966).https://doi.org/JTPLA2

  55. 55. N. Polonsky, C. Cohen‐Tannoudji, J. Phys. Radium 26, 409 (1965);
    N. Polonsky, C. Cohen‐Tannoudji, Compt. Rend. 260, 5231 (1965); https://doi.org/COREAF
    N. Polonsky, C. Cohen‐Tannoudji, 261, 369 (1965); https://doi.org/COREAF , Compt. Rend.
    C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 261, 5400 (1965).https://doi.org/COREAF

  56. 56. C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 262, 268 (1966).

  57. 57. C. Cohen‐Tannoudji, S. Haroche, Compt. Rend. 262, 37 (1966).

  58. 58. J. Margerie, Publications Scientifiques du Ministère de l’Air N. T. 155 (1966);
    J. Brossel, J. Margerie, p. 535 in Paramagnetic Resonance, Vol. 2, (W. Low, ed.) Academic Press, New York (1963);
    N. V. Karlov, J. Margerie, M. D’Aubigné, J. Phys. Radium 24, 717 (1963);
    See also: A Kastler in Lasers and Applications (W.S.C. Chang, ed.) Ohio State University, Columbus (1963).

More about the Authors

Alfred Kastler. Ecole Normale Superieure.

This Content Appeared In
pt-cover_1967_09.jpeg

Volume 20, Number 9

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.