Nuclear Mean‐Field Theory
DOI: 10.1063/1.881019
One of the fundamental challenges common to all areas of physics is to understand the properties of systems having large or infinite numbers of degrees of freedom in terms of known underlying interactions. Simply knowing the Schrödinger equation and Coulomb’s law, for example, is not sufficient to let us understand the chain through which atoms form molecules, which, in turn, beget macromolcules, which eventually aggregate into a biological object with a life of its own. Nor has knowledge of the Lagrangian for quantum chromodynamics yet yielded an understanding of hadrons. The physics of systems with many degrees of freedom often differs in crucial ways from what we understand for simple systems.
References
1. Extensive references to the work surveyed in this article are given in J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).https://doi.org/RMPHAT
2. K. A. Brueckner, C. A. Levinson, Pys. Rev. 97, 1344 (1955). https://doi.org/PHRVAO
K. A. Brueckner, Phys. Rev. 97, 1353 (1955); https://doi.org/PHRVAO
K. A. Brueckner, 100, 36 (1955).
H. A. Bethe, J. Goldstone, Proc. R. Soc. Lond. A238, 551 (1957).
L. C. Gomes, J. D. Walecka, V. F. Weisskopf, Ann. Phys. (N.Y.) 3, 241 (1958); https://doi.org/APNYA6
H. A. Bethe, Phys. Rev. B138, 804 (1965).https://doi.org/PHRVAO3. B. D. Day, Rev. Mod. Phys. 50, 495 (1978); https://doi.org/RMPHAT
H. K. Kümmel, K. Lührmann, J. Zabolitsky, Phys. Rep. C36, 1 (1978).4. J. W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972); https://doi.org/PRVCAN
J. W. Negele, Phys. Rev. C 1, 1260 (1970); https://doi.org/PRVCAN
D. Gogny in, Nuclear Self‐Consistent Fields, G. Ripka, M. Porneuf, eds., North‐Holland, Amsterdam (1975) p. 33.5. J. L. Friar, J. W. Negele, Adv. Nucl. Phys. 8, 219 (1975).https://doi.org/ANUPBZ
6. A. K. Kerman, S. E. Koonin, Ann. Phys. (N.Y.) 100, 322 (1976).https://doi.org/APNYA6
7. B. Frois, et al., Phys. Rev. Lett. 38, 152 (1977).https://doi.org/PRLTAO
8. J. W. Negele, G. Rinker, Phys. Rev. C 15, 1499 (1977).https://doi.org/PRVCAN
9. C. Creswell, PhD dissertation, Massachusetts Institute of Technology (1977).
10. J. W. Negele, D. Vautherin, Nucl. Phys. A207, 298 (1973).https://doi.org/NUPBBO
11. M. S. Weiss, Fizika 9, Suppl. 3, 315 (1977).https://doi.org/FZKAAA
12. P. Bonche, S. E. Koonin, J. W. Negele, Phys. Rev. C 13, 1226 (1976); https://doi.org/PRVCAN
G. F. Bertsch, in Nuclear Physics with Heavy Ions and Mesons, Les Houches Summer School XXX, R. Balian, M. Rho, G. Ripka, eds., North‐Holland, Amsterdam (1978).13. P. Bonche, B. Grammaticos, S. E. Koonin, Phys. Rev. C 17, 1700 (1978).https://doi.org/PRVCAN
14. M. Conjeaud, et al., in Proc. Int. Conf. on Nuclear Structure, Tokyo, September 1977, International Academic Printing Co., Japan (1977) p. 663
15. R. P. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw‐Hill, New York (1965).
16. H. Kuratsuji, T. Suzuki, Phys. Lett. B92, 19 (1980); https://doi.org/PYLBAJ
J. P. Blaizot, H. Orland, Phys. Rev. C 24, 1740 (1981).https://doi.org/PRVCAN17. S. Levit, J. W. Negele, Z. Paltiel, Phys. Rev. C 21, 1603 (1980); https://doi.org/PRVCAN
H. Reinhardt, Nucl. Phys. A346, 1 (1980).https://doi.org/NUPBBO18. S. Levit, J. W. Negele, Z. Paltiel, Phys. Rev. C 22, 1979 (1980); https://doi.org/PRVCAN
H. Reinhardt, Nucl. Phys. A367, 269 (1981).https://doi.org/NUPBBO19. J. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).https://doi.org/APNYA6
20. A. K. Kerman, S. Levit, Phys. Rev. C 24, 1029 (1981).https://doi.org/PRVCAN
21. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A427, 278 (1984); https://doi.org/NUPBBO
P. Bonche, S. Levit, D. Vautherin, A436, 265 (1985).22. S. Levit, Phys. Rev. C 21, 1594 (1980); https://doi.org/PRVCAN
Y. Alhassid, S. E. Koonin, Phys. Rev. C 23, 1590 (1981); https://doi.org/PRVCAN
R. Balian, M. Vénéroni, Phys. Rev. Lett. 47, 1353 (1981).https://doi.org/PRLTAO
More about the Authors
John W. Negele. MIT.