Discover
/
Article

Nuclear Magnetic Ordering at Nanokelvin Temperatures

OCT 01, 1989
If you cool a suitable metal such as copper to sufficiently low temperatures, its nuclei will align spontaneously; susceptibility and neutron diffraction experiments have detected the effect and have set a new low‐temperature record in the process.
Olli V. Lounasmaa

Just as electrons engage in spontaneous magnetic ordering, accounting for such phenomena as ferromagnetic domains, so too can nuclei order spontaneously. However, because nuclear magnetic moments are very much smaller than electron magnetic moments, spontaneous nuclear ordering occurs only at extremely low temperatures. As we will see, experiments conducted in the course of research on nuclear ordering have produced spin temperatures as low as 25 nanokelvins in copper and 2 nanokelvins in silver.

This article is only available in PDF format

References

  1. 1. A. S. Oja, Physica Scripta T19, 462 (1987).https://doi.org/PHSTBO

  2. 2. N. Kurti, F. N. Robinson, F. E. Simon, D. A. Spohr, Nature 178, 450 (1956). https://doi.org/NATUAS
    N. Kurti, Physica B&C 109–110, 1737 (1982).https://doi.org/PHBCDQ

  3. 3. Y. Roinel, V. Bouffard, G. L. Bacchella, M. Pinot, P. Meriel, P. Roubeau, O. Avenel, M. Goldman, A. Abragam, Phys. Rev. Lett. 41, 1572 (1978). https://doi.org/PRLTAO
    A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford (1982).

  4. 4. G. J. Ehnholm, J. P. Ekström, J. F. Jacquinot, M. T. Loponen, O. V. Lounasmaa, J. K. Soini, J. Low Temp. Phys. 39, 417 (1980).https://doi.org/JLTPAC

  5. 5. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T. Loponen, O. V. Lounasmaa, A. S. Oja, J. Low Temp. Phys. 62, 433 (1986).https://doi.org/JLTPAC

  6. 6. O. V. Lounasmaa, PHYSICS TODAY, December 1979, p. 32.
    K. Andres, O. V. Lounasmaa, Prog. Low Temp. Phys. 8, 222 (1982).https://doi.org/PLTPAA

  7. 7. T. A. Jyrkkiö, M. T. Huiku, O. V. Lounasmaa, K. Siemensmeyer, K. Kakurai, M. Steiner, K. N. Clausen, J. K. Kjems, Phys. Rev. Lett. 60, 2418 (1988). https://doi.org/PRLTAO
    T. A. Jyrkkiö, M. T. Huiku, K. Siemensmeyer, K. N. Clausen, J. Low Temp. Phys. 74, 435 (1989).https://doi.org/JLTPAC

  8. 8. P.‐A. Lindgard, X.‐W. Wang, B. N. Harmon, J. Magn. and Magn. Mater. 54–57, 1052 (1986).
    S. J. Frisken, D. J. Miller, Phys. Rev. Lett. 57, 2971 (1986). https://doi.org/PRLTAO
    A. S. Oja, X.‐W. Wang, B. N. Harmon, Phys. Rev. B 39, 4009 (1989).https://doi.org/PRBMDO

  9. 9. D. Mukamel, S. Krinsky, Phys. Rev. B 13, 5065, 5078 (1976). https://doi.org/PLRBAQ
    P. Bak, D. Mukamel, Phys. Rev. B 13, 5086 (1976).https://doi.org/PLRBAQ

  10. 10. L. H. Kjäldman, P. Kumar, M. T. Loponen, Phys. Rev. B 23, 2051 (1981). https://doi.org/PRBMDO
    K. J. Niskanen, J. Kurkijärvi, J. Phys. A 16, 1491 (1983).https://doi.org/JPHAC5

  11. 11. H. E. Viertiö, A. S. Oja, Phys. Rev. B 36, 3805 (1987).https://doi.org/PRBMDO

  12. 12. P.‐A. Lindgard, Phys. Rev. Lett. 61, 629 (1988).https://doi.org/PRLTAO

  13. 13. S. J. Frisken, D. J. Miller, Phys. Rev. Lett. 61, 1017 (1988).https://doi.org/PRLTAO

  14. 14. H. E. Viertiö, A. S. Oja, in Quantum Fluids and Solids, G. G. Ihas, Y. Takano, eds., AIP Conf. Proc. 194, AIP, New York (1989).

  15. 15. F. Pobell, La Recherche 19, 784 (1988).

  16. 16. G. Eska, E. Schuberth, Japan J. Appl. Phys. Suppl. 26‐3, 435 (1987).

  17. 17. M. Golman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford (1970).

More about the Authors

Olli V. Lounasmaa. Helsinki University of Technology.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1989_10.jpeg

Volume 42, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.