Nuclear Magnetic Ordering at Nanokelvin Temperatures
DOI: 10.1063/1.881204
Just as electrons engage in spontaneous magnetic ordering, accounting for such phenomena as ferromagnetic domains, so too can nuclei order spontaneously. However, because nuclear magnetic moments are very much smaller than electron magnetic moments, spontaneous nuclear ordering occurs only at extremely low temperatures. As we will see, experiments conducted in the course of research on nuclear ordering have produced spin temperatures as low as 25 nanokelvins in copper and 2 nanokelvins in silver.
References
1. A. S. Oja, Physica Scripta T19, 462 (1987).https://doi.org/PHSTBO
2. N. Kurti, F. N. Robinson, F. E. Simon, D. A. Spohr, Nature 178, 450 (1956). https://doi.org/NATUAS
N. Kurti, Physica B&C 109–110, 1737 (1982).https://doi.org/PHBCDQ3. Y. Roinel, V. Bouffard, G. L. Bacchella, M. Pinot, P. Meriel, P. Roubeau, O. Avenel, M. Goldman, A. Abragam, Phys. Rev. Lett. 41, 1572 (1978). https://doi.org/PRLTAO
A. Abragam, M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford (1982).4. G. J. Ehnholm, J. P. Ekström, J. F. Jacquinot, M. T. Loponen, O. V. Lounasmaa, J. K. Soini, J. Low Temp. Phys. 39, 417 (1980).https://doi.org/JLTPAC
5. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T. Loponen, O. V. Lounasmaa, A. S. Oja, J. Low Temp. Phys. 62, 433 (1986).https://doi.org/JLTPAC
6. O. V. Lounasmaa, PHYSICS TODAY, December 1979, p. 32.
K. Andres, O. V. Lounasmaa, Prog. Low Temp. Phys. 8, 222 (1982).https://doi.org/PLTPAA7. T. A. Jyrkkiö, M. T. Huiku, O. V. Lounasmaa, K. Siemensmeyer, K. Kakurai, M. Steiner, K. N. Clausen, J. K. Kjems, Phys. Rev. Lett. 60, 2418 (1988). https://doi.org/PRLTAO
T. A. Jyrkkiö, M. T. Huiku, K. Siemensmeyer, K. N. Clausen, J. Low Temp. Phys. 74, 435 (1989).https://doi.org/JLTPAC8. P.‐A. Lindgard, X.‐W. Wang, B. N. Harmon, J. Magn. and Magn. Mater. 54–57, 1052 (1986).
S. J. Frisken, D. J. Miller, Phys. Rev. Lett. 57, 2971 (1986). https://doi.org/PRLTAO
A. S. Oja, X.‐W. Wang, B. N. Harmon, Phys. Rev. B 39, 4009 (1989).https://doi.org/PRBMDO9. D. Mukamel, S. Krinsky, Phys. Rev. B 13, 5065, 5078 (1976). https://doi.org/PLRBAQ
P. Bak, D. Mukamel, Phys. Rev. B 13, 5086 (1976).https://doi.org/PLRBAQ10. L. H. Kjäldman, P. Kumar, M. T. Loponen, Phys. Rev. B 23, 2051 (1981). https://doi.org/PRBMDO
K. J. Niskanen, J. Kurkijärvi, J. Phys. A 16, 1491 (1983).https://doi.org/JPHAC511. H. E. Viertiö, A. S. Oja, Phys. Rev. B 36, 3805 (1987).https://doi.org/PRBMDO
12. P.‐A. Lindgard, Phys. Rev. Lett. 61, 629 (1988).https://doi.org/PRLTAO
13. S. J. Frisken, D. J. Miller, Phys. Rev. Lett. 61, 1017 (1988).https://doi.org/PRLTAO
14. H. E. Viertiö, A. S. Oja, in Quantum Fluids and Solids, G. G. Ihas, Y. Takano, eds., AIP Conf. Proc. 194, AIP, New York (1989).
15. F. Pobell, La Recherche 19, 784 (1988).
16. G. Eska, E. Schuberth, Japan J. Appl. Phys. Suppl. 26‐3, 435 (1987).
17. M. Golman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford (1970).
More about the Authors
Olli V. Lounasmaa. Helsinki University of Technology.