Discover
/
Article

Nonlinear Optics of Organic and Polymer Materials

MAY 01, 1994
Exotic multiexciton strings, electron correlation effects and custom‐designed nonlinear optical molecules are some of the developments resulting from initial efforts toward active control of light‐matter interactions in nonlinear organic systems. The potential applications are equally diverse and exciting.

DOI: 10.1063/1.881433

Anthony Garito
Rui Fang Shi
Marvin Wu

Over the past decade the study of nonlinear optical processes in organic and polymer systems has enjoyed rapid and sustained growth. One indication of that growth is the increase in the number of articles published inrefereed society journals. The four‐year period 1980–83 saw the publication of 124 such articles. For the four‐year period a decade later the production of articles in the field had grown to 736—nearly a sixfold increase. In part, the rapid growth of the field can be attributed to the technological promise and interesting physical properties of these materials. Because of their large optical nonlinearities and mechanical, chemical, thermal and optical stability, organic nonlinear optical materials are the leading practical materials for fabricating optoelectronic devices. They also have proven to be excellent subjects in which to study many‐body electron correlation effects and exotic states like polarons, excitons and even coherently propagating multiexciton strings.

References

  1. 1. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics, Marcel Dekker, New York (1992).

  2. 2. L. Y. Chiang, A. F. Garito, D. J. Sandman, eds., Mater. Res. Soc. Proc. 247 (1992).

  3. 3. J. Messier, F. Kajzar, P. N. Prasad, eds., Organic Molecules for Nonlinear Optics and Photonics, NATO Adv. Studies Inst. Ser. E, Kluwer Academic, Boston, Mass. (1991).
    M. G. Kuzyk, J. D. Swalen, eds., Nonlinear Opt. 6 (1993).
    G. R. Mohlmann, ed., Proc. SPIE 2025 (1993).
    G. J. Ashwell, D. Bloor, eds., Organic Materials for Nonlinear Optics III, Proc. Int. Symp. on Organic Materials for Nonlinear Optics, R. Soc. Chem., Oxford, England (1993).
    A. F. Garito, A. K. Y. Jen, C. Y. C. Lee, L. R. Dalton, eds., Mater. Res. Soc. Proc. 328 (1994).

  4. 4. R. F. Shi, M. H. Wu, S. Yamada, Y. M. Cai, A. F. Garito, Appl. Phys. Lett. 63, 1173 (1993).https://doi.org/APPLAB

  5. 5. B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975). https://doi.org/JCPSA6
    L. T. Cheng, W. Tam, S. H. Stevenson, G. Meredith, G. Rikken, S. R. Marder, J. Phys. Chem. 95, 10631 (1991).https://doi.org/JPCHAX

  6. 6. K. Clays, A. Persoons, Phys. Rev. Lett. 66, 2980 (1991). https://doi.org/PRLTAO
    J. Zyss, J. Chem. Phys. 98, 6583 (1993).https://doi.org/JCPSA6

  7. 7. C. C. Teng, A. F. Garito, Phys. Rev. B 28, 6766 (1983). https://doi.org/PRBMDO
    J. L. Bredas, C. Dehu, F. Meyers, J. Zyss, Proc. SPIE 1560, 98 (1991).https://doi.org/PSISDG

  8. 8. E. E. Havinga, P. van Pelt, Ber. Bunsenges. Phys. Chem. 83, 816 (1979). https://doi.org/BBPCAX
    K. D. Singer, M. G. Kuzyk, J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).https://doi.org/JOBPDE

  9. 9. J. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, R. Lytel, Appl. Phys. Lett. 58, 225 (1991).https://doi.org/APPLAB

  10. 10. T. Matsuura, S. Ando, S. Matsui, H. Hirata, S. Sasaki, F. Yamamoto, in Organic Thin Films for Photonic Applications Technical Digest, vol. 17, Opt. Soc. Am., Washington, D.C. (1993), p. 262.

  11. 11. Y. Shi, W. H. Steier, M. Chen, L. P. Yu, L. R. Dalton, Appl. Phys. Lett. 60, 2577 (1992); also in ref. 1, p. 433.https://doi.org/APPLAB

  12. 12. E. S. Binkley, S. Nara, in Organic Thin Films for Photonic Applications Technical Digest, vol. 17, Opt. Soc. Am., Washington, D.C. (1993), p. 266.

  13. 13. V. P. Rao, A. K. Y. Jen, K. Y. Wong, K. J. Drost, J. Am. Chem. Soc. 14, 1118 (1993). https://doi.org/JACSAT
    M. Staehelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, C. A. Walsh, Appl. Phys. Lett. 61, 1626 (1992) https://doi.org/APPLAB

  14. 14. C. C. Teng, Appl. Phys. Lett. 60, 1538 (1992).https://doi.org/APPLAB

  15. 15. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, D. Karim, Appl. Phys. Lett. 57, 977 (1990).https://doi.org/APPLAB

  16. 16. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, D. J. Williams, Nature 367, 49 (1994).https://doi.org/NATUAS

  17. 17. T. Kobayashi, M. Yoshizawa, M. Taiji, U. Stamm, M. Hasegawa, J. Opt. Soc. Am. B 7, 1558 (1990). https://doi.org/JOBPDE
    J. R. Heflin, K. Y. Wong, O. Zamani‐Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988). https://doi.org/PRBMDO
    J. L. Bredas, C. Adant, P. Tackx, A. Persoons, B. M. Pierce, Chem. Rev. (in press), and refs. therein.

  18. 18. D. Guo, S. Mazumdar, G. I. Stegeman, M. Cha, D. Neher, S. Aramaki, W. Torruellas, R. Zanomi, in ref. 2, p. 151.

  19. 19. Q. L. Zhou, PhD dissertation, U. of Penn., Philadelphia (1993).

  20. 20. H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic, Orlando, Fla. (1985).

  21. 21. D. C. Rodenberger, J. R. Heflin, A. F. Garito, Nature 359, 309 (1992). https://doi.org/NATUAS
    M. Kuwata‐Gonokami, N. Peyghambarian, K. Meisner, B. Fluegel, Y. Sata, K. Ema, R. Shimano, S. Mazumdar, F. Guo, T. Tokihiro, H. Ezaki, E. Hanamura, Nature 367, 47 (1994). https://doi.org/NATUAS
    S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, K. Mansour, Science 261, 186 (1993). https://doi.org/SCIEAS
    M. P. Andrews, M. G. Kuzyk, F. Ghebremichael, Nonlinear Opt. 6, 103 (1993).

  22. 22. K. Sutter, P. Gunter, J. Opt. Soc. Am. B 7, 2274 (1990).https://doi.org/JOBPDE

  23. 23. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).https://doi.org/PRLTAO

More about the Authors

Anthony Garito. University of Pennsylvania.

Rui Fang Shi. University of Pennsylvania.

Marvin Wu. University of Pennsylvania.

This Content Appeared In
pt-cover_1994_05.jpeg

Volume 47, Number 5

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.