Discover
/
Article

Nonlinear Optics of Organic and Polymer Materials

MAY 01, 1994
Exotic multiexciton strings, electron correlation effects and custom‐designed nonlinear optical molecules are some of the developments resulting from initial efforts toward active control of light‐matter interactions in nonlinear organic systems. The potential applications are equally diverse and exciting.
Anthony Garito
Rui Fang Shi
Marvin Wu

Over the past decade the study of nonlinear optical processes in organic and polymer systems has enjoyed rapid and sustained growth. One indication of that growth is the increase in the number of articles published inrefereed society journals. The four‐year period 1980–83 saw the publication of 124 such articles. For the four‐year period a decade later the production of articles in the field had grown to 736—nearly a sixfold increase. In part, the rapid growth of the field can be attributed to the technological promise and interesting physical properties of these materials. Because of their large optical nonlinearities and mechanical, chemical, thermal and optical stability, organic nonlinear optical materials are the leading practical materials for fabricating optoelectronic devices. They also have proven to be excellent subjects in which to study many‐body electron correlation effects and exotic states like polarons, excitons and even coherently propagating multiexciton strings.

This article is only available in PDF format

References

  1. 1. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics, Marcel Dekker, New York (1992).

  2. 2. L. Y. Chiang, A. F. Garito, D. J. Sandman, eds., Mater. Res. Soc. Proc. 247 (1992).

  3. 3. J. Messier, F. Kajzar, P. N. Prasad, eds., Organic Molecules for Nonlinear Optics and Photonics, NATO Adv. Studies Inst. Ser. E, Kluwer Academic, Boston, Mass. (1991).
    M. G. Kuzyk, J. D. Swalen, eds., Nonlinear Opt. 6 (1993).
    G. R. Mohlmann, ed., Proc. SPIE 2025 (1993).
    G. J. Ashwell, D. Bloor, eds., Organic Materials for Nonlinear Optics III, Proc. Int. Symp. on Organic Materials for Nonlinear Optics, R. Soc. Chem., Oxford, England (1993).
    A. F. Garito, A. K. Y. Jen, C. Y. C. Lee, L. R. Dalton, eds., Mater. Res. Soc. Proc. 328 (1994).

  4. 4. R. F. Shi, M. H. Wu, S. Yamada, Y. M. Cai, A. F. Garito, Appl. Phys. Lett. 63, 1173 (1993).https://doi.org/APPLAB

  5. 5. B. F. Levine, C. G. Bethea, J. Chem. Phys. 63, 2666 (1975). https://doi.org/JCPSA6
    L. T. Cheng, W. Tam, S. H. Stevenson, G. Meredith, G. Rikken, S. R. Marder, J. Phys. Chem. 95, 10631 (1991).https://doi.org/JPCHAX

  6. 6. K. Clays, A. Persoons, Phys. Rev. Lett. 66, 2980 (1991). https://doi.org/PRLTAO
    J. Zyss, J. Chem. Phys. 98, 6583 (1993).https://doi.org/JCPSA6

  7. 7. C. C. Teng, A. F. Garito, Phys. Rev. B 28, 6766 (1983). https://doi.org/PRBMDO
    J. L. Bredas, C. Dehu, F. Meyers, J. Zyss, Proc. SPIE 1560, 98 (1991).https://doi.org/PSISDG

  8. 8. E. E. Havinga, P. van Pelt, Ber. Bunsenges. Phys. Chem. 83, 816 (1979). https://doi.org/BBPCAX
    K. D. Singer, M. G. Kuzyk, J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).https://doi.org/JOBPDE

  9. 9. J. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, R. Lytel, Appl. Phys. Lett. 58, 225 (1991).https://doi.org/APPLAB

  10. 10. T. Matsuura, S. Ando, S. Matsui, H. Hirata, S. Sasaki, F. Yamamoto, in Organic Thin Films for Photonic Applications Technical Digest, vol. 17, Opt. Soc. Am., Washington, D.C. (1993), p. 262.

  11. 11. Y. Shi, W. H. Steier, M. Chen, L. P. Yu, L. R. Dalton, Appl. Phys. Lett. 60, 2577 (1992); also in ref. 1, p. 433.https://doi.org/APPLAB

  12. 12. E. S. Binkley, S. Nara, in Organic Thin Films for Photonic Applications Technical Digest, vol. 17, Opt. Soc. Am., Washington, D.C. (1993), p. 266.

  13. 13. V. P. Rao, A. K. Y. Jen, K. Y. Wong, K. J. Drost, J. Am. Chem. Soc. 14, 1118 (1993). https://doi.org/JACSAT
    M. Staehelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, C. A. Walsh, Appl. Phys. Lett. 61, 1626 (1992) https://doi.org/APPLAB

  14. 14. C. C. Teng, Appl. Phys. Lett. 60, 1538 (1992).https://doi.org/APPLAB

  15. 15. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, D. Karim, Appl. Phys. Lett. 57, 977 (1990).https://doi.org/APPLAB

  16. 16. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, D. J. Williams, Nature 367, 49 (1994).https://doi.org/NATUAS

  17. 17. T. Kobayashi, M. Yoshizawa, M. Taiji, U. Stamm, M. Hasegawa, J. Opt. Soc. Am. B 7, 1558 (1990). https://doi.org/JOBPDE
    J. R. Heflin, K. Y. Wong, O. Zamani‐Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988). https://doi.org/PRBMDO
    J. L. Bredas, C. Adant, P. Tackx, A. Persoons, B. M. Pierce, Chem. Rev. (in press), and refs. therein.

  18. 18. D. Guo, S. Mazumdar, G. I. Stegeman, M. Cha, D. Neher, S. Aramaki, W. Torruellas, R. Zanomi, in ref. 2, p. 151.

  19. 19. Q. L. Zhou, PhD dissertation, U. of Penn., Philadelphia (1993).

  20. 20. H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic, Orlando, Fla. (1985).

  21. 21. D. C. Rodenberger, J. R. Heflin, A. F. Garito, Nature 359, 309 (1992). https://doi.org/NATUAS
    M. Kuwata‐Gonokami, N. Peyghambarian, K. Meisner, B. Fluegel, Y. Sata, K. Ema, R. Shimano, S. Mazumdar, F. Guo, T. Tokihiro, H. Ezaki, E. Hanamura, Nature 367, 47 (1994). https://doi.org/NATUAS
    S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, K. Mansour, Science 261, 186 (1993). https://doi.org/SCIEAS
    M. P. Andrews, M. G. Kuzyk, F. Ghebremichael, Nonlinear Opt. 6, 103 (1993).

  22. 22. K. Sutter, P. Gunter, J. Opt. Soc. Am. B 7, 2274 (1990).https://doi.org/JOBPDE

  23. 23. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846 (1991).https://doi.org/PRLTAO

More about the Authors

Anthony Garito. University of Pennsylvania.

Rui Fang Shi. University of Pennsylvania.

Marvin Wu. University of Pennsylvania.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1994_05.jpeg

Volume 47, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.