Discover
/
Article

Nonlinear Optics in Quanutm‐Confined Structures

JUN 01, 1993
Experimenters and theorists have combined two new and productive fields of physics—nonlinear optics and quantum confinement—to reveal a host of unusual and useful properties in semiconductor heterostructures.

DOI: 10.1063/1.881354

Daniel S. Chemla

Nonlinear optical effects arise when one applies to a material system optical fields that are on the order of or larger than the atomic fields that exist within the system. Quantum size effects appear when the dimensions of a system become comparable to or even smaller than the natural length scale governing its quantum mechanics. Much recent progress has resulted from the combination of these two very productive areas of physics. Because of advances in semiconductor and laser technologies, it is now possible to apply very intense, ultrashort pulses of light to nanometer‐scale semiconductor heterostructures. These conditions produce many new and exciting effects. This article aims to give the reader a flavor of the status of this quickly evolving field of research, with a special emphasis on the most novel and unexpected results.

References

  1. 1. S. Schmitt‐Rink, D. S. Chemla, D. A. B. Miller, Adv. Phys. 38, 89 (1989).https://doi.org/ADPHAH

  2. 2. J. B. Stark, W. H. Knox, D. S. Chemla, Phys. Rev. Lett. 65, 3033 (1990); https://doi.org/PRLTAO
    J. B. Stark, W. H. Knox, D. S. Chemla, 68, 3080 (1992).
    J. B. Stark, W. H. Knox, D. S. Chemla, in Optics of Semiconductor Nanostructures, F. Henneberger, S. Schmitt‐Rink, E. Gobel, eds., VCH, Weinheim, Germany (1993), p. 204.

  3. 3. W. H. Knox, in Hot Carriers in Semiconductor Nanostructures, J. Shah, ed., Academic, San Diego (1992), p. 313, and refs. therein.

  4. 4. J.‐P. Foing, D. Hulin, M. Joffre, M. K. Jackson, J.‐L. Oudar, C. Tanguy, M. Combescot, Phys. Rev. Lett. 68, 110 (1992).https://doi.org/PRLTAO

  5. 5. N. Peygahmbarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, A. Mysyrowicz, Phys. Rev. Lett. 53, 2433 (1984).https://doi.org/PRLTAO

  6. 6. S. Schmitt‐Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).https://doi.org/PRBMDO

  7. 7. I. V. Lerner, Y. E. Lozovik, Sov. Phys. JETP 53, 763 (1981). https://doi.org/SPHJAR
    D. Paquet, T. M. Rice, K. Ueda, Phys. Rev. B 32, 5208 (1985).https://doi.org/PRBMDO

  8. 8. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986). https://doi.org/PRLTAO
    A. Von Lehmen, D. S. Chemla, J. E. Zucker, J. Heritage, Opt. Lett. 11, 609 (1986). https://doi.org/OPLEDP
    M. Joffre, D. Hulin, A. Antonetti, J. Phys. (Paris) C 5, 537 (1987).

  9. 9. S. Schmitt‐Rink, D. S. Chemla, H. Haug, Phys. Rev. B 37, 941 (1998), and refs. therein.https://doi.org/PRBMDO

  10. 10. C. Ell, J. F. Muller, K. El‐Sayed, H. Haug, Phys. Rev. Lett. 62, 304 (1989). https://doi.org/PRLTAO
    W. Schafer, Festkorperprobleme: Adv. Solid State Phys. 28, 63 (1988).

  11. 11. W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, S. Schmitt‐Rink, Phys. Rev. Lett. 62, 1189 (1989). https://doi.org/PRLTAO
    D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt‐Rink, J. B. Stark, R. Zimmermann, J. Lumin. 44, 233 (1989).https://doi.org/JLUMA8

  12. 12. K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Gobel, T. C. Damen, S. Schmitt‐Rink, W. Schafer, Phys. Rev. Lett. 65, 1340 (1990). https://doi.org/PRLTAO
    M. Wegener, D. S. Chemla, S. Schmitt‐Rink, W. Schafer, Phys. Rev. A 42, 5675 (1990).https://doi.org/PLRAAN

  13. 13. S. Weiss, M.‐A. Mycek, J.‐Y. Bigot, S. Schmitt‐Rink, D. S. Chemla, Phys. Rev. Lett. 69, 2685 (1992).https://doi.org/PRLTAO

  14. 14. D. S. Kim, J. Shah, T. C. Damen, W. Schafer, F. Jahnke, S. Schmitt‐Rink, K. Kohler, Phys. Rev. Lett. 69, 2725 (1992).https://doi.org/PRLTAO

  15. 15. J.‐Y. Bigot, M.‐A. Mycek, S. Weiss, R. G. Ulbrich, D. S. Chemla, Phys. Rev. Lett. 70, 3307 (1993).https://doi.org/PRLTAO

  16. 16. K. Leo, J. Shah, E. O. Gobel, T. C. Damen, S. Schmitt‐Rink, W. Schafer, J. Muller, K. Kohler, Mod Phys. Lett. B 5, 87 (1991).

  17. 17. J. Hegarty, M. D. Sturge, J. Opt. Soc. Am. B 2, 1143 (1985). https://doi.org/JOBPDE
    H. Wang, D. G. Steel, Appl. Phys. A 53, 514 (1991).https://doi.org/APSFDB

  18. 18. K. L. Hall, G. Lenz, E. P. Ippen, U. Koren, G. Raybon, Appl. Phys. Lett. 61, 2512(, 1992), and refs. therein.https://doi.org/APPLAB

  19. 19. A. E. Paul, R. Binder, S. W. Koch, Phys. Rev. B I 45, 5879 (1992), and refs. therein.

  20. 20. J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. vonPlessen, A. Schulze, P. Thomas, S. Schmitt‐Rink, Phys. Rev. B I 46, 7252 (1992).

  21. 21. M. Koch, J. Feldmann, G. von. Plessen, E. O. Gobel, P. Thomas, K. Kohler, Phys. Rev. Lett. 69, 3631 (1992).https://doi.org/PRLTAO

More about the Authors

Daniel S. Chemla. University of California, Lawrence Berkeley Laboratory.

This Content Appeared In
pt-cover_1993_06.jpeg

Volume 46, Number 6

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.