Nonlinear Optical Frequency Conversion
DOI: 10.1063/1.881430
The colored rings shown in figure 1 are a spectacular manifestation of one type of nonlinear optical frequency conversion: parametric amplification of quantum noise. The amplification in this case is produced by the propagation of an intense pulse of ultraviolet radiation through a crystal of barium borate. When intense electromagnetic radiation propagates through such a material, whose polarization response at optical frequencies manifests a strongly nonlinear dependence on electric field amplitude, nonlinear mixing of the input radiation generates new spectral components. We can exploit this phenomenon to generate coherent radiation at frequencies for which we have no convenient laser sources.
References
1. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).https://doi.org/PRLTAO
2. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).
3. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).https://doi.org/PHRVAO
4. J. A. Giordmaine, Phys. Rev. Lett. 8, 19 (1962). https://doi.org/PRLTAO
P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Phys. Rev. Lett. 8, 21 (1962).https://doi.org/PRLTAO5. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics, Wiley, New York (1973),
contains interesting details of early nonlinear materials research. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan,Handbook of Nonlinear Optical Crystals, Springer‐Verlag, Berlin (1991), is a comprehensive current reference.6. J. G. Endriz, M. Vakili, G. S. Browder, M. DeVito, J. M. Haden, G. L. Harnagel, W. E. Plano, M. Sakamoto, D. F. Welch, S. Willing, D. P. Worland, H. C. Yao, IEEE J. Quantum Electron. 28, 952 (1992).https://doi.org/IEJQA7
7. D. W. Hughes, J. R. M. Barr, J. Physics D 25, 563 (1992).
8. IEEE J. Quantum Electron. 28 (10) (1992) ia a special issue on ultrafast optics.
9. P. F. Bordui, M. M. Fejer, Annu. Rev. Mater. Sci. 23, 321 (1993).https://doi.org/ARMSCX
10. J. Zyss, Molecular Nonlinear Optics: Materials, Devices, and Physics, Academic, Boston (1994).
11. U. Simon, F. K. Tittel, Methods of Experimental Physics, vol. III, R. G. Hulet, F. B. Dunning, eds., Academic, Boston (1994).
12. P. J. Wegener, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, T. L. Weiland, Appl. Opt. 31, 6414 (1992).https://doi.org/APOPAI
13. A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. 2, 109 (1966).https://doi.org/IEJQA7
14. R. Smith, IEEE J. Quantum Electron. 6, 215 (1970).https://doi.org/IEJQA7
15. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).https://doi.org/IEJQA7
16. M. A. Persaud, J. M. Tolchard, A. I. Ferguson, IEEE J. Quantum Electron. 6, 1253 (1990).https://doi.org/IEJQA7
17. S. Schiller, R. L. Byer, J. Opt. Soc. Am. B 10, 1696 (1993).https://doi.org/JOBPDE
18. J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965). https://doi.org/PRLTAO
R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. van Uitert, Appl. Phys. Lett. 12, 308 (1968).https://doi.org/APPLAB19. R. L. Byer, in Nonlinear Optics, P. G. Harper, B. S. Wherrett, eds., Academic, San Francisco (1977), ch. 2.
20. C. L. Tang, W. R. Bosenberger, T. Ukachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992). https://doi.org/IEEPAD
Two recent special issues on optical parametric oscillators areC. L. Tang, W. R. Bosenberger, T. Ukachi, R. J. Lane, L. K. Cheng, J. Opt. Sci. Am. 10 (9)and 10 (111) (1993).21. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum. Electron. 28, 2631 (1992).https://doi.org/IEJQA7
22. P. K. Tien, R. Uhlrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).https://doi.org/APPLAB
23. G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).https://doi.org/JAPIAU
24. H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).https://doi.org/IEJQA7
25. M. M. Fejer, in Guided Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds., Kluwer, Dordrecht, The Netherlands (1992), p. 133.
More about the Authors
Martin M. Fejer. Stanford University, Palo Alto, California.