Discover
/
Article

Nonlinear Optical Frequency Conversion

MAY 01, 1994
Mixing laser beams of different frequencies in a crystal with nonlinear polarizability can generate coherent output at sum and difference frequencies for which there are no convenient laser sources.
Martin M. Fejer

The colored rings shown in figure 1 are a spectacular manifestation of one type of nonlinear optical frequency conversion: parametric amplification of quantum noise. The amplification in this case is produced by the propagation of an intense pulse of ultraviolet radiation through a crystal of barium borate. When intense electromagnetic radiation propagates through such a material, whose polarization response at optical frequencies manifests a strongly nonlinear dependence on electric field amplitude, nonlinear mixing of the input radiation generates new spectral components. We can exploit this phenomenon to generate coherent radiation at frequencies for which we have no convenient laser sources.

This article is only available in PDF format

References

  1. 1. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).https://doi.org/PRLTAO

  2. 2. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).

  3. 3. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962).https://doi.org/PHRVAO

  4. 4. J. A. Giordmaine, Phys. Rev. Lett. 8, 19 (1962). https://doi.org/PRLTAO
    P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Phys. Rev. Lett. 8, 21 (1962).https://doi.org/PRLTAO

  5. 5. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics, Wiley, New York (1973),
    contains interesting details of early nonlinear materials research. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan,Handbook of Nonlinear Optical Crystals, Springer‐Verlag, Berlin (1991), is a comprehensive current reference.

  6. 6. J. G. Endriz, M. Vakili, G. S. Browder, M. DeVito, J. M. Haden, G. L. Harnagel, W. E. Plano, M. Sakamoto, D. F. Welch, S. Willing, D. P. Worland, H. C. Yao, IEEE J. Quantum Electron. 28, 952 (1992).https://doi.org/IEJQA7

  7. 7. D. W. Hughes, J. R. M. Barr, J. Physics D 25, 563 (1992).

  8. 8. IEEE J. Quantum Electron. 28 (10) (1992) ia a special issue on ultrafast optics.

  9. 9. P. F. Bordui, M. M. Fejer, Annu. Rev. Mater. Sci. 23, 321 (1993).https://doi.org/ARMSCX

  10. 10. J. Zyss, Molecular Nonlinear Optics: Materials, Devices, and Physics, Academic, Boston (1994).

  11. 11. U. Simon, F. K. Tittel, Methods of Experimental Physics, vol. III, R. G. Hulet, F. B. Dunning, eds., Academic, Boston (1994).

  12. 12. P. J. Wegener, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, T. L. Weiland, Appl. Opt. 31, 6414 (1992).https://doi.org/APOPAI

  13. 13. A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. 2, 109 (1966).https://doi.org/IEJQA7

  14. 14. R. Smith, IEEE J. Quantum Electron. 6, 215 (1970).https://doi.org/IEJQA7

  15. 15. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).https://doi.org/IEJQA7

  16. 16. M. A. Persaud, J. M. Tolchard, A. I. Ferguson, IEEE J. Quantum Electron. 6, 1253 (1990).https://doi.org/IEJQA7

  17. 17. S. Schiller, R. L. Byer, J. Opt. Soc. Am. B 10, 1696 (1993).https://doi.org/JOBPDE

  18. 18. J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett. 14, 973 (1965). https://doi.org/PRLTAO
    R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, L. G. van Uitert, Appl. Phys. Lett. 12, 308 (1968).https://doi.org/APPLAB

  19. 19. R. L. Byer, in Nonlinear Optics, P. G. Harper, B. S. Wherrett, eds., Academic, San Francisco (1977), ch. 2.

  20. 20. C. L. Tang, W. R. Bosenberger, T. Ukachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992). https://doi.org/IEEPAD
    Two recent special issues on optical parametric oscillators areC. L. Tang, W. R. Bosenberger, T. Ukachi, R. J. Lane, L. K. Cheng, J. Opt. Sci. Am. 10 (9)and 10 (111) (1993).

  21. 21. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum. Electron. 28, 2631 (1992).https://doi.org/IEJQA7

  22. 22. P. K. Tien, R. Uhlrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).https://doi.org/APPLAB

  23. 23. G. I. Stegeman, C. T. Seaton, J. Appl. Phys. 58, R57 (1985).https://doi.org/JAPIAU

  24. 24. H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).https://doi.org/IEJQA7

  25. 25. M. M. Fejer, in Guided Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds., Kluwer, Dordrecht, The Netherlands (1992), p. 133.

More about the Authors

Martin M. Fejer. Stanford University, Palo Alto, California.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1994_05.jpeg

Volume 47, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.