Discover
/
Article

Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials

APR 01, 1999
New tools such as nonlinear resonant ultrasound spectroscopy are being used to reveal the complex behavior of rocks and other materials.
Robert A. Guyer
Paul A. Johnson

A squash ball almost doesn’t bounce; a Superball bounces first left then right, seeming to have a mind of its own. Remarkable and complex elastic behavior isn’t confined to sports equipment and toys. Indeed, it can be found in some surprising places. When the elastic behavior of a rock is probed, for instance, it shows extreme nonlinearity hysteresis and discrete memory (the Flint‐stones could have had a computer that used a sandstone for random‐access memory). Rocks are an example of a class of unusual elastic materials that includes sand. soil, cement, concrete, ceramics and, it turns out, damaged materials, Many members of this class are the blue‐collar materials of daily life: They are in the bridges we cross on the way to work, the roofs over our heads and the ground beneath our cities—such as the Los Angeles basin (home to many earthquakes). The elastic behavior of these materials is of more than academic interest.

This article is only available in PDF format

References

  1. 1. R. A. Guyer, K. R. McCall, G. N. Boitnott, Phys. Rev. Lett. 74, 3491 (1995). https://doi.org/PRLTAO
    K. R. McCall, R. A. Guyer, J. Geophys. Res. 99, 23887 (1994).https://doi.org/JGREA2

  2. 2. L. D. Landau. E. M. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon, Oxford, England (1986).

  3. 3. There exist many fine books and review articles on nonlinear acoustics, including R. T. Beyer, Nonlinear Acoustics in Fluids, Benchmark Papers in Acoustics, Van Nostrand Reinhold, New York (1984);
    M. F. Hamilton, D. T. Blackstock, eds., Nonlinear Acoustics, Academic, San Diego (1997);
    K. Naugolnykh, L. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge U. P., New York (1998);
    L. K. Zarembo, V. A. Krasil’nikov, Sov. Phys. Usp. 13, 778 (1971).https://doi.org/SOPUAP

  4. 4. G. D. MeeganJr., P. A. Johnson, K. R. McCall, R. A. Guyer, J. Acoust. Soc. Am. 94, 3387 (1993). https://doi.org/JASMAN
    J. A. TenCate, K. E.‐A. Van Den Abeele, T. J. Shankland, P. A. Johnson, J. Acoust. Soc. Am. 100, 1383 (1996). https://doi.org/JASMAN
    K. E.‐A. Van Den Abeele, J. Acoust. Soc. Am. 99, 3334 (1996).https://doi.org/JASMAN

  5. 5. T. Cadoret, D. Marion, B. Zinszner, J. Geophys. Res. 100, 9789 (1995).https://doi.org/JGREA2

  6. 6. O. L. Anderson, D, G. Isaak. in A Handbook of Physical Constants: Mineral Physics and Crystallography, AGU Reference Shelf vol. 2, T. J. Ahrens. ed., American Geophysical Union, Washington. DC (1995), p. 64,
    A. Migliori. J. L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Non‐Destructive Evaluation, Wiley, New York (1997).

  7. 7. J. A. TenCate, T. J. Shankland, Geophys. Res. Lett. 23, 3019 (1996).https://doi.org/GPRLAJ

  8. 8. I. A. Beresnev, K.‐L. Wen, Bull. Seismol. Soc. Am. 80, 1964 (1996). https://doi.org/BSSAAP
    K. Ishihara, Soil Behavior in Earthquake Geotechnics, Clarendon, Oxford, England (1996).

  9. 9. T. Paulay, M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, New York, (1992).

  10. 10. M. Vucetic, R. Dobry, J. Geotechnical Eng. 117, 89 (1991);
    G. Yu. J. G. Anderson, R. Siddharthan, Bull. Seismol. Soc. Am. 83, 218 (1993).https://doi.org/BSSAAP

  11. 11. A.‐W. Elgamal, M. Zeghal, E. Parra, R. Gunturi, H. T. Tang, J. C. Stepp, Soil Dynamics and Earthquake Engineering 15, 499 (1996).

  12. 12. K. E.‐A. Van Den Abeele, P. A. Johnson, F. Bonilla, E. H. Field, I. Beresnev, preprint available.

  13. 13. E. H. Field, Y. Zeng, P. A. Johnson, I. A. Beresnev, J. Geophys. Res. 103, 26869 (1998).https://doi.org/JGREA2

  14. 14. A. S. Korotkov, M. M. Slavinskii, A. M. Sutin, Acoust. Phys. 40, 71 (1994). https://doi.org/AOUSEK
    A. S. Korotkov, A. M. Sutin, Acoust. Lett. 18, 59 (1994).https://doi.org/ACLEDI

  15. 15. W. L. Morris, O. Buck, R. V. Inman, J. Appl. Phys. 50, 6737 (1979). https://doi.org/JAPIAU
    The papers presented at the annual Quantitative Nondestructive Evaluation meeting represent a wealth of information. See, for example, D. O. Thompson, D. E. Chimenti, eds., Review of Progress in Quantitative Nondestructive Evaluation Vol. 11, Plenum, New York (1992).

  16. 16. P. A. Johnson, A. Sutin, K. E.‐A. Van Den Abeele, preprint available.

  17. 17. F. Preisach, Z. Phys. 94, 277 (1935). https://doi.org/ZEPYAA
    I. D. Mayergoyz, J. Appl. Phys. 57, 3803 (1985).https://doi.org/JAPIAU

More about the Authors

Robert A. Guyer. University of Massachusetts, Amberst.

Paul A. Johnson. Los Alamos National Laboratory, New Mexico.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1999_04.jpeg

Volume 52, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.