Discover
/
Article

Noncrystalline semiconductors

OCT 01, 1984
New materials free of the constraints of long‐range periodic order have applications ranging from optical memory disks and photovoltaic cells to diffraction gratings and x‐ray lenses.
Hellmut Fritzsche

After rapid growth over the past 15 years, research on noncrystalline semiconductors is now one of the most active and exciting areas in condensed‐matter physics. Technological interest has always been an important stimulant for fundamental materials research, and work on noncrystalline semiconductors is no exception. The field is active because the unique properties of these new semiconductors, together with techniques for spreading thin films over large areas, open many new possibilities for applications. Among the noncrystalline semiconductor devices at one or another stage of research or development are optical memory disks with extremely high information density, large‐area electronic circuits on thin flexible substrates, faster and more durable photoreceptor drums for xerographic copying machines, x‐ray lenses, holograms and inexpensive photovoltaic cells, just to mention a few

This article is only available in PDF format

References

  1. 1. S. R. Ovshinsky in Structure and Excitations of Amorphous Solids, G. Lucovsky, F. L. Galeener, eds., A.I.P. conf. proc. No 31, American Institute of Physics, New York (1976), p. 31.

  2. 2. J. C. Phillips, J. Non‐Cryst. Solids 34, 153, (1979).https://doi.org/JNCSBJ

  3. 3. W. H. Zachariasen, J. Am. Chem. Soc. 34, 3841, (1932).https://doi.org/JACSAT

  4. 4. W. E. Spear, P. G. LeComber, J. Non‐Cryst. Solids 8–10, 727, (1972).https://doi.org/JNCSBJ

  5. 5. S. R. Ovshinsky, A. Madan, Nature 276, 482, (1978).https://doi.org/NATUAS

  6. 6. S. C. Agarwal, Phys. Rev. B 7, 685, (1973).

  7. 7. P. W. Anderson, Phys. Rev. Lett. 34, 953, (1975).https://doi.org/PRLTAO

  8. 8. R. A. Street, N. F. Mott, Phys. Rev. Lett. 35, 1293, (1975).https://doi.org/PRLTAO

  9. 9. M. A. Kastner, D. Adler, H. Fritzsche, Phys. Rev. Lett. 37, 1504, (1976).https://doi.org/PRLTAO

  10. 10. R. C. Zeller, R. O. Pohl, Phys. Rev. B4, 2029 (1971).

  11. 11. A. C. Anderson in Amorphous Solids, Low‐Temperature Properties, W. A. Phillips, ed., Springer, New York (1981).

  12. 12. W. A. Phillips, J. Low Temp. Phys. 7, 351, (1972).https://doi.org/JLTPAC

  13. 13. P. W. Anderson, B. I. Halperin, C. M. Varma, Phil. Mag. 25, 1 (1972).https://doi.org/PHMAA4

  14. 14. B. Golding, J. E. Graebner in Amorphous Solids, Low‐Temperature Properties, W. A. Phillips, ed., Springer, New York (1981), p. 107.

  15. 15. S. Hunklinger, W. Arnold, S. Stein, R. Nava, K. Dransfeld, Phys. Lett. 42A, 253 (1972).

  16. 16. M. T. Loponen, R. C. Dynes, V. Narayanamurti, J. P. Garno, Phys. Rev. Lett. 45, 457, (1980).https://doi.org/PRLTAO

  17. 17. D. K. Biegelsen, R. A. Street, Phys. Rev. Lett. 44, 803, (1980).https://doi.org/PRLTAO

  18. 18. I. Shimizu, H. Sakuma, H. Kokado, E. and E. Inoue, Photogr. Sci. Eng. 16, 291, (1972); https://doi.org/PSENAC
    K. Chatani, I. Shimizu, H. Kokado, E. Inoue, Japan J. Appl. Phys. 16, 389 (1977).

  19. 19. W. E. Spear, P. G. LeComber, Solid State Commun. 17, 1193 (1975).https://doi.org/SSCOA4

  20. 20. S. R. Ovshinsky in Amorphous and Liquid Semiconductors, W. E. Spear, ed., University of Edinburgh, Edinburgh, Great Britain (1977), p. 519;
    S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).https://doi.org/PRLTAO

  21. 21. L. Esaki, R. Tsu, IBM J. Research and Development 14, 61 (1970).

  22. 22. B. Abeles, T. Tiedje, Phys. Rev. Lett. 51, 2003 (1983); https://doi.org/PRLTAO
    T. Ogino, Y. Mizushima, Japan J. Appl. Phys. 22, 1647 (1983);
    J. Kakalios, H. Fritzsche, N. Ibaraki, S. R. Ovshinsky, J. Non‐Cryst. Solids 66, 339 (1984).https://doi.org/JNCSBJ

  23. 23. H. W. Deckman, J. Dunsmuir, B. Abeles, submitted to Appl. Phys. Lett.

  24. 24. G. Döhler, Sci. Am., November 1983, p. 144;
    J. Kakalios, H. Fritzsche in Proc. 17th Intl. Conf. Physics of Semiconductors, Springer‐Verlag, New York, to be published.

More about the Authors

Hellmut Fritzsche. University of Chicago.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_10.jpeg

Volume 37, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.