New techniques of hyperfine spectroscopy
DOI: 10.1063/1.2914433
The decade of 1965–1975 saw a revolution in optical spectroscopy, culminating in the introduction of lasers into high‐resolution spectroscopy. Several laboratories immediately put the dye laser to good use for nuclear physics, by using it to measure hyperfine structures and isotope shifts. These developments have produced new, interesting, and at times unexpected, results. Currently, the main motivation of these studies is to understand the behavior of the nuclear charge distribution as the number of neutrons is varied. The required data on isotope shifts for long chains of stable and radioactive species, which until recently existed only for mercury and thallium, are now becoming available for other elements. Experiments are now extending the isotope‐shift measurements by “off‐line” techniques to nuclei with half lives greater than about 10 minutes, and by “on‐line” techniques with accelerators and isotope separators to nuclei with half‐lives in the second and sometimes millisecond ranges. The following article by Hans Schuessler concentrates on on‐line techniques applied to nuclei far from the region of stability.
References
1. P. Jacquinot, R. Klapisch, Rep. Prog. Phys. 42, 773 (1979).
2. A. Bohr, V. F. Weisskopf, Phys. Rev. 77, 94 (1950).
3. H. H. Stroke, R. J. Blin‐Stoyle, V. Jaccarino, Phys. Rev. 123, 1326 (1961).
4. T. Erber, C. M. Fowler, eds. Francis Bitter, Selected Papers and Commentaries, MIT Press (1969).
5. R. J. Hull, H. H. Stroke, J. Opt. Soc. Am. 51, 1203 (1961).
6. K. Bekk, A. Andl, S. Goring, A. Hanser, G. Nowicki, H. Rebel, G. Schatz, Z. Physik A291, 219 (1979).
7. S. L. Kaufman, Opt. Comm. 17, 309 (1976).
8. J. G. King, J. R. Zacharias, Advances in Electrons and Electron Physics, Academic, New York (1956), Vol. VIII, page 1.
9. O. Ames, E. A. Phillips, S. S. Glickstein, Phys. Rev. 137, B1157 (1965).
10. N. F. Ramsey, Molecular Beams, Oxford U.P. (1956).
11. U. Köpf, H. J. Besch, E. W. Otten, Ch. von Platen, Z. Physik 226, 297 (1969).
12. H. Kopfermann, Nuclear Moments, Academic, New York (1958).
13. J. Bonn, G. Huber, H.‐J. Kluge, E.‐W. Otten, Z. Phys. A276, 203 (1976).
14. W. J. Tomlinson, III, H. H. Stroke, Nuc. Phys. 60, 614 (1964).
15. R. C. Barrett, Nuc. Phys. 88, 128 (1966).
16. D. Proetel, D. Benson, Jr., A. Gizon, J. Gizon, M. R. Maier, R. M. Diamond, F. S. Stephens, Nuc. Phys. A226, 237 (1974).
17. H. H. Stroke, D. Proetel, H.‐J. Kluge, Phys. Lett. 82B, 204 (1979).
18. R. Marrus, D. McColm, Phys. Rev. Lett. 15, 813 (1965).https://doi.org/PRLTAO
19. O. Redi and E. Wang, Bull. Am. Phys. Soc. 18, 120 (1973).
20. C. E. Bemis, Jr., J. R. Beene, J. P. Young, S. D. Kramer, Phys. Rev. Lett. 43, 1854 (1979).https://doi.org/PRLTAO
21. E. Bergmann, P. Bopp, Ch. Dorsch, J. Kowalski, F. Trager, G. Zu Putlitz, Z. Physik A294, 319 (1980).
22. B. A. Brown, S. E. Massen, P. E. Hodgson, J. Phys. G 5, 1655 (1979).
23. F. Moscatelli, R. L. Wiggins, O. Redi, H. H. Stroke, Bull. Am. Phys. Soc. 25, 493 (1980);
O. Redi, F. Moscatelli, R. L. Wiggins, H. H. Stroke, R. A. Naumann, Bull. Am. Phys. Soc. 24, 624 (1979).
More about the Authors
Olav Redi. New York University.