Discover
/
Article

New techniques of hyperfine spectroscopy

FEB 01, 1981
High‐resolution atomic spectra can give us detailed information about unstable nuclei, including angular momenta, electric and magnetic multipole moments and variation in charge radii as a function of neutron number
Olav Redi

The decade of 1965–1975 saw a revolution in optical spectroscopy, culminating in the introduction of lasers into high‐resolution spectroscopy. Several laboratories immediately put the dye laser to good use for nuclear physics, by using it to measure hyperfine structures and isotope shifts. These developments have produced new, interesting, and at times unexpected, results. Currently, the main motivation of these studies is to understand the behavior of the nuclear charge distribution as the number of neutrons is varied. The required data on isotope shifts for long chains of stable and radioactive species, which until recently existed only for mercury and thallium, are now becoming available for other elements. Experiments are now extending the isotope‐shift measurements by “off‐line” techniques to nuclei with half lives greater than about 10 minutes, and by “on‐line” techniques with accelerators and isotope separators to nuclei with half‐lives in the second and sometimes millisecond ranges. The following article by Hans Schuessler concentrates on on‐line techniques applied to nuclei far from the region of stability.

This article is only available in PDF format

References

  1. 1. P. Jacquinot, R. Klapisch, Rep. Prog. Phys. 42, 773 (1979).

  2. 2. A. Bohr, V. F. Weisskopf, Phys. Rev. 77, 94 (1950).

  3. 3. H. H. Stroke, R. J. Blin‐Stoyle, V. Jaccarino, Phys. Rev. 123, 1326 (1961).

  4. 4. T. Erber, C. M. Fowler, eds. Francis Bitter, Selected Papers and Commentaries, MIT Press (1969).

  5. 5. R. J. Hull, H. H. Stroke, J. Opt. Soc. Am. 51, 1203 (1961).

  6. 6. K. Bekk, A. Andl, S. Goring, A. Hanser, G. Nowicki, H. Rebel, G. Schatz, Z. Physik A291, 219 (1979).

  7. 7. S. L. Kaufman, Opt. Comm. 17, 309 (1976).

  8. 8. J. G. King, J. R. Zacharias, Advances in Electrons and Electron Physics, Academic, New York (1956), Vol. VIII, page 1.

  9. 9. O. Ames, E. A. Phillips, S. S. Glickstein, Phys. Rev. 137, B1157 (1965).

  10. 10. N. F. Ramsey, Molecular Beams, Oxford U.P. (1956).

  11. 11. U. Köpf, H. J. Besch, E. W. Otten, Ch. von Platen, Z. Physik 226, 297 (1969).

  12. 12. H. Kopfermann, Nuclear Moments, Academic, New York (1958).

  13. 13. J. Bonn, G. Huber, H.‐J. Kluge, E.‐W. Otten, Z. Phys. A276, 203 (1976).

  14. 14. W. J. Tomlinson, III, H. H. Stroke, Nuc. Phys. 60, 614 (1964).

  15. 15. R. C. Barrett, Nuc. Phys. 88, 128 (1966).

  16. 16. D. Proetel, D. Benson, Jr., A. Gizon, J. Gizon, M. R. Maier, R. M. Diamond, F. S. Stephens, Nuc. Phys. A226, 237 (1974).

  17. 17. H. H. Stroke, D. Proetel, H.‐J. Kluge, Phys. Lett. 82B, 204 (1979).

  18. 18. R. Marrus, D. McColm, Phys. Rev. Lett. 15, 813 (1965).https://doi.org/PRLTAO

  19. 19. O. Redi and E. Wang, Bull. Am. Phys. Soc. 18, 120 (1973).

  20. 20. C. E. Bemis, Jr., J. R. Beene, J. P. Young, S. D. Kramer, Phys. Rev. Lett. 43, 1854 (1979).https://doi.org/PRLTAO

  21. 21. E. Bergmann, P. Bopp, Ch. Dorsch, J. Kowalski, F. Trager, G. Zu Putlitz, Z. Physik A294, 319 (1980).

  22. 22. B. A. Brown, S. E. Massen, P. E. Hodgson, J. Phys. G 5, 1655 (1979).

  23. 23. F. Moscatelli, R. L. Wiggins, O. Redi, H. H. Stroke, Bull. Am. Phys. Soc. 25, 493 (1980);
    O. Redi, F. Moscatelli, R. L. Wiggins, H. H. Stroke, R. A. Naumann, Bull. Am. Phys. Soc. 24, 624 (1979).

More about the Authors

Olav Redi. New York University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1981_02.jpeg

Volume 34, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.