Discover
/
Article

New sources of high‐power coherent radiation

MAR 01, 1984
Free‐electron lasers and cyclotron‐resonance masers show considerable promise for producing previously unattainable levels of power at wavelengths ranging from millimeters to the ultraviolet.
Phillip Sprangle
Timothy Coffey

Recent progress in novel techniques for generating high‐power coherent radiation promises to make available sources with a variety of new and exciting applications. Interestingly, the new techniques have more in common with those used in the earliest sources of coherent radiation—the various microwave generators—than with those used in the more recent optical lasers. Development of new sources based on these techniques is proceeding rapidly at research centers around the world, because the new sources have a great potential for extending the currently available range of wavelengths and levels of power, while maintaining high operating efficiencies. The areas of application that stand to benefit include spectroscopy, advanced accelerators, short‐wavelength radar, and plasma heating in fusion reactors.

This article is only available in PDF format

References

  1. 1. N. M. Kroll, W. A. McMullin, Phys. Rev. A 17, 300 (1978).https://doi.org/PLRAAN

  2. 2. A. A. Kolomenskii, A. N. Lebedev, Sov. J. Quantum Electron. 8, 879 (1978).https://doi.org/SJQEAF

  3. 3. P. Sprangle, R. A. Smith, V. L. Granatstein in Infrared and Millimeter Waves, Vol. 1, K. J. Button, ed., Academic, New York (1979).

  4. 4. Free‐Electron Generators of Coherent Radiation, Physics of Quantum Electronics series, S. F. Jacobs, H. S. Pilloff, M. Sargent III, M. O. Scully, R. Spitzer, eds., Addison‐Wesley, Reading, Mass. (1980), volumes 7, 8 and 9.

  5. 5. R. Davidson, W. McMullin, Phys. Fluids 26, 840 (1983).https://doi.org/PFLDAS

  6. 6. H. Fleischmann, PHYSICS TODAY, May 1975, page 35.

  7. 7. V. L. Granatstein, M. E. Read, L. R. Barnett in Infrared and Millimeter Waves, vol. 5, K. J. Button, ed., Academic, New York (1982).

  8. 8. IEEE Trans. Microwave Theory Tech. (special issue) MTT‐25, No. 6 (1977).

  9. 9. The Free Electron Laser, the report of the free‐electron‐laser subcommittee of the Solid State Sciences Committee, National Academy of Sciences, National Academy Press, Washington, D.C. (1982).

  10. 10. P. J. Channell, ed., Laser Acceleration of Particles, AIP Conf. Proc. No. 91, Am. Inst. Phys., New York (1982).

  11. 11. L. R. Elias, W. M. Fairbanks, J. M. J. Madey, H. A. Schwettman, T. I. Smith, Phys. Rev. Lett. 36, 717 (1976).https://doi.org/PRLTAO

  12. 12. Bendor Free Electron Laser Conf., Journal de Physique 44, C1 (1983).

  13. 13. IEEE J. Quant. Electron. QE‐19, a special issue on free‐electron lasers (1983).https://doi.org/IEJQA7

  14. 14. A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Goldenberg, M. I. Petelin, V. G. Usov, V. K. Yulpatov, Infrared Physics 18, 385 (December 1978).

  15. 15. V. A. Flyagin, A. G. Luchinin, G. S. Nusinovich, Int. J. Infrared and Millimeter Waves 3, 765 (1982).

  16. 16. Y. Carmel, K. R. Chu, M. Read, A. K. Ganguly, D. Dialetis, R. Seeley, J. S. Levine, V. L. Granatstein, Phys. Rev. Lett. 50, 112 (1983).https://doi.org/PRLTAO

  17. 17. L. R. Barnett, Y. Y. Lau, K. R. Chu, V. L. Granatstein, IEEE Trans. Electron Devices ED‐28, 872 (1981).https://doi.org/IETDAI

  18. 18. P. Sprangle, J. Vomvoridis, W. Manheimer, Phys. Rev. A23, 3127 (1981).https://doi.org/PLRAAN

  19. 19. N. A. Ebrahim, Z. Liang, J. L. Hirschfield, Phys. Rev. Lett. 49, 1556 (1982).https://doi.org/PRLTAO

  20. 20. R. A. Mahaffey, P. Sprangle, J. Golden, C. A. Kapetanakos, Phys. Rev. Lett. 39, 843 (1977).https://doi.org/PRLTAO

  21. 21. G. Bekefi, T. J. Orzechowski, Phys. Rev. Lett. 37, 379 (1976).https://doi.org/PRLTAO

More about the Authors

Phillip Sprangle. Naval Research Laboratory, Washington, DC.

Timothy Coffey. Naval Research Laboratory, Washington, DC.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_03.jpeg

Volume 37, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.