Discover
/
Article

New sources of high‐power coherent radiation

MAR 01, 1984
Free‐electron lasers and cyclotron‐resonance masers show considerable promise for producing previously unattainable levels of power at wavelengths ranging from millimeters to the ultraviolet.
Phillip Sprangle
Timothy Coffey

Recent progress in novel techniques for generating high‐power coherent radiation promises to make available sources with a variety of new and exciting applications. Interestingly, the new techniques have more in common with those used in the earliest sources of coherent radiation—the various microwave generators—than with those used in the more recent optical lasers. Development of new sources based on these techniques is proceeding rapidly at research centers around the world, because the new sources have a great potential for extending the currently available range of wavelengths and levels of power, while maintaining high operating efficiencies. The areas of application that stand to benefit include spectroscopy, advanced accelerators, short‐wavelength radar, and plasma heating in fusion reactors.

This article is only available in PDF format

References

  1. 1. N. M. Kroll, W. A. McMullin, Phys. Rev. A 17, 300 (1978).https://doi.org/PLRAAN

  2. 2. A. A. Kolomenskii, A. N. Lebedev, Sov. J. Quantum Electron. 8, 879 (1978).https://doi.org/SJQEAF

  3. 3. P. Sprangle, R. A. Smith, V. L. Granatstein in Infrared and Millimeter Waves, Vol. 1, K. J. Button, ed., Academic, New York (1979).

  4. 4. Free‐Electron Generators of Coherent Radiation, Physics of Quantum Electronics series, S. F. Jacobs, H. S. Pilloff, M. Sargent III, M. O. Scully, R. Spitzer, eds., Addison‐Wesley, Reading, Mass. (1980), volumes 7, 8 and 9.

  5. 5. R. Davidson, W. McMullin, Phys. Fluids 26, 840 (1983).https://doi.org/PFLDAS

  6. 6. H. Fleischmann, PHYSICS TODAY, May 1975, page 35.

  7. 7. V. L. Granatstein, M. E. Read, L. R. Barnett in Infrared and Millimeter Waves, vol. 5, K. J. Button, ed., Academic, New York (1982).

  8. 8. IEEE Trans. Microwave Theory Tech. (special issue) MTT‐25, No. 6 (1977).

  9. 9. The Free Electron Laser, the report of the free‐electron‐laser subcommittee of the Solid State Sciences Committee, National Academy of Sciences, National Academy Press, Washington, D.C. (1982).

  10. 10. P. J. Channell, ed., Laser Acceleration of Particles, AIP Conf. Proc. No. 91, Am. Inst. Phys., New York (1982).

  11. 11. L. R. Elias, W. M. Fairbanks, J. M. J. Madey, H. A. Schwettman, T. I. Smith, Phys. Rev. Lett. 36, 717 (1976).https://doi.org/PRLTAO

  12. 12. Bendor Free Electron Laser Conf., Journal de Physique 44, C1 (1983).

  13. 13. IEEE J. Quant. Electron. QE‐19, a special issue on free‐electron lasers (1983).https://doi.org/IEJQA7

  14. 14. A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Goldenberg, M. I. Petelin, V. G. Usov, V. K. Yulpatov, Infrared Physics 18, 385 (December 1978).

  15. 15. V. A. Flyagin, A. G. Luchinin, G. S. Nusinovich, Int. J. Infrared and Millimeter Waves 3, 765 (1982).

  16. 16. Y. Carmel, K. R. Chu, M. Read, A. K. Ganguly, D. Dialetis, R. Seeley, J. S. Levine, V. L. Granatstein, Phys. Rev. Lett. 50, 112 (1983).https://doi.org/PRLTAO

  17. 17. L. R. Barnett, Y. Y. Lau, K. R. Chu, V. L. Granatstein, IEEE Trans. Electron Devices ED‐28, 872 (1981).https://doi.org/IETDAI

  18. 18. P. Sprangle, J. Vomvoridis, W. Manheimer, Phys. Rev. A23, 3127 (1981).https://doi.org/PLRAAN

  19. 19. N. A. Ebrahim, Z. Liang, J. L. Hirschfield, Phys. Rev. Lett. 49, 1556 (1982).https://doi.org/PRLTAO

  20. 20. R. A. Mahaffey, P. Sprangle, J. Golden, C. A. Kapetanakos, Phys. Rev. Lett. 39, 843 (1977).https://doi.org/PRLTAO

  21. 21. G. Bekefi, T. J. Orzechowski, Phys. Rev. Lett. 37, 379 (1976).https://doi.org/PRLTAO

More about the authors

Phillip Sprangle, Naval Research Laboratory, Washington, DC.

Timothy Coffey, Naval Research Laboratory, Washington, DC.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1984_03.jpeg

Volume 37, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.