Discover
/
Article

New Opportunities at Soft‐X‐Ray Wavelengths

AUG 01, 1992
Advances in synchrotron radiation, x‐ray lasers and x‐ray optics permit new studies in the life and physical sciences at spatial resolutions of hundreds of angstroms.
David Attwood

A once dark region of the electromagnetic spectrum is now becoming very bright. The soft‐x‐ray spectral region, nominally extending from wavelengths of several angstroms to several hundred angstroms and including photon energies from tens of electron volts to several thousand electron volts, is providing many new research and development opportunities in the physical and life sciences and in industry. The move toward shorter wavelengths is driven in part by the desire to see and write smaller features. But the numerous and distinct atomic resonances in this region of the spectrum also provide for elemental identification and, in some cases, chemical sensitivity. (See the article by Bernd Crasemann and Francois Wuilleumier in PHYSICS TODAY, June 1984, page 34.) Developments in x‐ray optics and new sources of highbrightness, partially coherent radiation make it possible to study materials and biological samples with feature sizes of several hundred angstroms.

This article is only available in PDF format

References

  1. 1. W. K. Purves, G. H. Orians, H. C. Heller, Life: The Science of Biology, 3rd ed., Freeman, Salt Lake City, Utah (1992).

  2. 2. H. Ade, J. Kirz, S. Hulbert, E. Johnson, E. Anderson, D. Kern, J. Vac. Sci. Technol. A 9, 1902 (1991). https://doi.org/JVTAD6
    C. Capasso, A. K. Ray‐Chaudhuri, W. Ng, S. Liang, R. K. Cole, J. Wallace, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, R. C. C. Perera, J. Vac. Sci. Technol. A 9, 1248 (1991).https://doi.org/JVTAD6

  3. 3. J. H. Underwood, D. T. Attwood, PHYSICS TODAY, April 1984, p. 44.
    N. M. Ceglio, J. X‐Ray Sci. Technol. 1, 7 (1989).https://doi.org/JXSTE5

  4. 4. J. B. Kortright, D. G. Stearns, D. L. Windt, Physics of Multilayer Structures, Opt. Soc. Am. Technical Digest 7, OSA, Washington, D.C. (1992).

  5. 5. E. H. Anderson, D. Kern, in X‐Ray Microscopy III, G. Michette, G. R. Morrison, C. J. Buckley, eds., Springer‐Verlag, New York (1992), p. 75.
    W. Meyer‐Ilse, P. Guttmann, J. Thieme, D. Rudolph, G. Schmahl, E. Anderson, P. Batson, D. Attwood, N. Iskander, D. Kern, ibid., p. 284.

  6. 6. A. Hofmann, Nucl. Instrum. Methods 152, 17 (1978), and refs. therein.https://doi.org/NUIMAL
    K.‐J. Kim, in “X‐Ray Data Booklet,” D. Vaughan, ed., pub. 490 revised, Lawrence Berkeley Lab., Berkeley, Calif. (April 1986), p. 4‐1.

  7. 7. B. M. Kincaid, J. Appl. Phys. 48, 2684 (1977).https://doi.org/JAPIAU

  8. 8. G. K. Shenoy, D. E. Moncton, in Handbook on Synchrotron Radiation, vol. 3, G. S. Brown, D. E. Moncton, eds., North Holland, Amsterdam (1991), p. 38.

  9. 9. S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, D. Voorhees, Phys. Rev. Lett. 55, 1753 (1985). https://doi.org/PRLTAO
    R. C. Elton, X‐Ray Lasers, Academic, New York (1990).

  10. 10. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kaufman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, Phys. Rev. Lett. 54, 110 (1985).https://doi.org/PRLTAO

  11. 11. B. J. MacGowan, L. B. Da Silva, D. J. Fields, A. R. Fry, C. J. Keane, J. A. Koch, D. L. Matthews, S. Maxon, S. Mrowka, A. L. Osterheid, J. H. Scofield, G. Shimkaveg, in X‐Ray Lasers 1990, G. J. Tallents, ed., Adam Hilger, Bristol, England (1990).

  12. 12. R. A. London, M. D. Rosen, J. E. Trebes, Appl. Opt. 28, 3397 (1989).https://doi.org/APOPAI

  13. 13. L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. Barbee, J. Brase, J. Gray, J. A. Koch, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, G. Stone, “X‐Ray Laser Imaging Microscopy of Rat Sperm Nuclei,” submitted to Science.

  14. 14. M. Born, E. Wolf, Principles of Optics, Pergamon, New York (1980).

  15. 15. D. T. Attwood, K. Halbach, K.‐J. Kim, Science 228, 1265 (1985).https://doi.org/SCIEAS

  16. 16. J. Kirz, H. Ade, C. Jacobsen, C.‐H. Ko, S. Lindaas, I. McNulty, D. Sayre, S. Williams, X. Zhang, M. Howells, Rev. Sci. Instrum. 63, 557 (1992).https://doi.org/RSINAK

  17. 17. D. Rudolph, B. Niemann, G. Schmahl, O. Christ, in X‐Ray Microscopy, G. Schmahl, D. Rudolph, eds., Springer‐Verlag, New York (1984).
    P. Guttmann, G. Schneider, M. Robert‐Nicoud, B. Niemann, D. Rudolph, J. Thieme, T. M. Jovin, G. Schmahl, in X‐Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds., Springer‐Verlag, New York (1992).

  18. 18. M. Howells, J. Kirz, D. Sayer, G. Schmahl, PHYSICS TODAY, August 1985, p. 22.
    M. Howells, J. Kirz, D. Sayre, Sci. Am., February 1991, p. 88.

  19. 19. I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, D. Kern, M. Howells, Science 256, 1009 (1992), and refs. therein.https://doi.org/SCIEAS

  20. 20. J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Raab, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicz, D. L. White, D. L. Windt, O. R. WoodII, J. Vac. Sci. Technol. B 8, 1509 (1990).https://doi.org/JVTBD9

  21. 21. J. Dawson, A. Sessler, in X‐Ray Imaging for the Life Sciences, D. Attwood, B. Barton, eds., rep. LBL‐27660, Lawrence Berkeley Lab., Berkeley, Calif. (August 1989), p. 108.

More about the Authors

David Attwood. College of Engineering, University of California, Berkeley.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_08.jpeg

Volume 45, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.