New Mechanisms for Laser Cooling
DOI: 10.1063/1.881239
When an atom or a molecule interacts with a light beam, the light emitted or absorbed carries valuable information about the atomic or molecular structure. This phenomenon underlies the whole field of spectroscopy. But the interaction of a photon with an atom can be used to manipulate the atom as well as to probe its structure. For example, in an approach called optical pumping, invented by Alfred Kastler, one can use the resonant exchange of angular momentum between atoms and polarized photons to align or orient the spins of atoms or to put them in nonequilibrium situations. In his original 1950 paper Kastler also proposed using optical pumping to cool and to heat the internal degrees of freedom, calling the phenomena the “effet luminofrigorique” and the “effet luminocalorique.” Another famous example of the use of photon‐atom interaction to control atoms is laser cooling. This technique relies on resonant exchange of linear momentum between photons and atoms to control their external degrees of freedom and thus to reduce their kinetic energy. Laser cooling was suggested independently by Theodor Hänsch and Arthur Schawlow for neutral atoms and by David Wineland and Hans Dehmelt for trapped ions. In an article written three years ago for
References
1. T. Hänsch, A. Schawlow, Opt. Commun. 13, 68 (1975).https://doi.org/OPCOB8
2. D. Wineland, H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).https://doi.org/BAPSA6
3. D. Wineland, W. Itano, Phys. Rev. A 20, 1521 (1979). https://doi.org/PLRAAN
S. Stenholm, Rev. Mod. Phys. 58, 699 (1986). https://doi.org/RMPHAT
J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).https://doi.org/PLRAAN4. J. Dalibard, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985). https://doi.org/JOBPDE
A. P. Kazantsev, V. S. Smirnov, G. I. Surdutovich, D. O. Chudesnikov, V. P. Yakovlev, J. Opt. Soc. Am. B 2, 1731 (1985).https://doi.org/JOBPDE5. A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen‐Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).https://doi.org/PRLTAO
6. S. Chu, L. W. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).https://doi.org/PRLTAO
7. P. Gould, P. Lett, W. Phillips in Laser Spectroscopy VIII, W. Persson, S. Svanberg, eds., Springer‐Verlag, Berlin (1987), p. 64.
8. S. Chu, M. Prentiss, A. Cable, J. Bjorkholm in Laser Spectroscopy VIII, W. Persson, S. Svanberg, eds., Springer‐Verlag, Berlin (1987), p. 58.
9. P. Lett, R. Watts, C. Westbrook, W. D. Phillips, P. Gould, H. Metcalf, Phys. Rev. Lett. 61, 169 (1988).https://doi.org/PRLTAO
10. Y. Shevy, D. Weiss, S. Chu, in Spin Polarized Quantum Systems, S. Stringari, ed., World Scientific, Singapore (1989), p. 287.
11. J. Dalibard, C. Salomon, A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, in Atomic Physics 11, S. Haroche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 199.
12. W. D. Phillips, C. I. Westbrook, P. D. Lett, R. N. Watts, P. L. Gould, H. J. Metcalf, in Atomic Physics 11, S. Harouche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 633.
13. S. Chu, D. S. Weiss, Y. Shevy, P. Ungar, in Atomic Physics 11, S. Haroche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 636.
14. J. Dalibard, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).https://doi.org/JOBPDE
15. P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).https://doi.org/JOBPDE
16. C. Cohen‐Tannoudji, Ann. Phys. (Paris) 7, 423, 469 (1962).https://doi.org/ANPHAJ
17. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, S. Chu, J. Opt. Soc. Am. B 6, 2072 (1989), https://doi.org/JOBPDE
M. Kasevich, D. Weiss, S. Chu, Optics Lett. 15, 607 (1990).https://doi.org/OPLEDP18. B. Sheevy, S. Q. Shang, P. van der Straten, S. Hatamian, H. J. Metcalf, Phys. Rev. Lett. 64, 85 (1990).https://doi.org/PRLTAO
19. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).https://doi.org/JOBPDE
20. C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Europhys. Lett. 12, 683 (1990).https://doi.org/EULEEJ
21. C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).https://doi.org/PRLTAO
22. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, Phys. Rev. Lett. 61, 826 (1988).https://doi.org/PRLTAO
23. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cimento B 36, 5 (1976).
24. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 6, 2112 (1989).https://doi.org/JOBPDE
25. F. Mauri, F. Papoff, E. Arimondo, proceedings of the LIKE workshop, Isola D’Elba, Italy, May, 1990, L. Moi et al., eds., to be published.
26. M. A. Ol’shanii, V. G. Minogin, proceedings of the LIKE workshop, Isola D’Elba, Italy, May, 1990, L. Moi et al., eds., to be published.
27. C. Cohen‐Tannoudji, C. R. Acad. Sci. 252, 394 (1961).
M. Arditi, T. R. Carver, Phys. Rev. 124, 800 (1961).https://doi.org/PHRVAO
More about the Authors
Claude N. Cohen‐Tannoudji. Collège de France.
William D. Phillips. National Institute of Standards and Technology, Gaithersburg, Maryland.