Discover
/
Article

New Mechanisms for Laser Cooling

OCT 01, 1990
Optical pumping and light shifts have unexpectedly conspired to improve laser cooling by orders of magnitude and to produce the lowest kinetic temperatures ever measured.

DOI: 10.1063/1.881239

Claude N. Cohen‐Tannoudji
William D. Phillips

When an atom or a molecule interacts with a light beam, the light emitted or absorbed carries valuable information about the atomic or molecular structure. This phenomenon underlies the whole field of spectroscopy. But the interaction of a photon with an atom can be used to manipulate the atom as well as to probe its structure. For example, in an approach called optical pumping, invented by Alfred Kastler, one can use the resonant exchange of angular momentum between atoms and polarized photons to align or orient the spins of atoms or to put them in nonequilibrium situations. In his original 1950 paper Kastler also proposed using optical pumping to cool and to heat the internal degrees of freedom, calling the phenomena the “effet luminofrigorique” and the “effet luminocalorique.” Another famous example of the use of photon‐atom interaction to control atoms is laser cooling. This technique relies on resonant exchange of linear momentum between photons and atoms to control their external degrees of freedom and thus to reduce their kinetic energy. Laser cooling was suggested independently by Theodor Hänsch and Arthur Schawlow for neutral atoms and by David Wineland and Hans Dehmelt for trapped ions. In an article written three years ago for PHYSICS TODAY (June 1987, page 34), Wineland and Wayne Itano presented the principle of laser cooling and the potential applications of cold atoms to fields of physics such as ultrahigh resolution spectroscopy, atomic clocks, collisions, surface physics and collective quantum effects. At that time laser cooling had brought temperatures down to a few hundred microkelvin, but unexpected improvements during the last three years have dramatically lowered those temperatures to only a few microkelvin. We now feel we understand the new physical mechanisms responsible for these very low temperatures.

References

  1. 1. T. Hänsch, A. Schawlow, Opt. Commun. 13, 68 (1975).https://doi.org/OPCOB8

  2. 2. D. Wineland, H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).https://doi.org/BAPSA6

  3. 3. D. Wineland, W. Itano, Phys. Rev. A 20, 1521 (1979). https://doi.org/PLRAAN
    S. Stenholm, Rev. Mod. Phys. 58, 699 (1986). https://doi.org/RMPHAT
    J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).https://doi.org/PLRAAN

  4. 4. J. Dalibard, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985). https://doi.org/JOBPDE
    A. P. Kazantsev, V. S. Smirnov, G. I. Surdutovich, D. O. Chudesnikov, V. P. Yakovlev, J. Opt. Soc. Am. B 2, 1731 (1985).https://doi.org/JOBPDE

  5. 5. A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen‐Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).https://doi.org/PRLTAO

  6. 6. S. Chu, L. W. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).https://doi.org/PRLTAO

  7. 7. P. Gould, P. Lett, W. Phillips in Laser Spectroscopy VIII, W. Persson, S. Svanberg, eds., Springer‐Verlag, Berlin (1987), p. 64.

  8. 8. S. Chu, M. Prentiss, A. Cable, J. Bjorkholm in Laser Spectroscopy VIII, W. Persson, S. Svanberg, eds., Springer‐Verlag, Berlin (1987), p. 58.

  9. 9. P. Lett, R. Watts, C. Westbrook, W. D. Phillips, P. Gould, H. Metcalf, Phys. Rev. Lett. 61, 169 (1988).https://doi.org/PRLTAO

  10. 10. Y. Shevy, D. Weiss, S. Chu, in Spin Polarized Quantum Systems, S. Stringari, ed., World Scientific, Singapore (1989), p. 287.

  11. 11. J. Dalibard, C. Salomon, A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, in Atomic Physics 11, S. Haroche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 199.

  12. 12. W. D. Phillips, C. I. Westbrook, P. D. Lett, R. N. Watts, P. L. Gould, H. J. Metcalf, in Atomic Physics 11, S. Harouche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 633.

  13. 13. S. Chu, D. S. Weiss, Y. Shevy, P. Ungar, in Atomic Physics 11, S. Haroche, J. C. Gay, G. Grynberg, eds., World Scientific, Singapore (1989), p. 636.

  14. 14. J. Dalibard, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).https://doi.org/JOBPDE

  15. 15. P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).https://doi.org/JOBPDE

  16. 16. C. Cohen‐Tannoudji, Ann. Phys. (Paris) 7, 423, 469 (1962).https://doi.org/ANPHAJ

  17. 17. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, S. Chu, J. Opt. Soc. Am. B 6, 2072 (1989), https://doi.org/JOBPDE
    M. Kasevich, D. Weiss, S. Chu, Optics Lett. 15, 607 (1990).https://doi.org/OPLEDP

  18. 18. B. Sheevy, S. Q. Shang, P. van der Straten, S. Hatamian, H. J. Metcalf, Phys. Rev. Lett. 64, 85 (1990).https://doi.org/PRLTAO

  19. 19. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).https://doi.org/JOBPDE

  20. 20. C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Europhys. Lett. 12, 683 (1990).https://doi.org/EULEEJ

  21. 21. C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).https://doi.org/PRLTAO

  22. 22. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, Phys. Rev. Lett. 61, 826 (1988).https://doi.org/PRLTAO

  23. 23. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cimento B 36, 5 (1976).

  24. 24. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen‐Tannoudji, J. Opt. Soc. Am. B 6, 2112 (1989).https://doi.org/JOBPDE

  25. 25. F. Mauri, F. Papoff, E. Arimondo, proceedings of the LIKE workshop, Isola D’Elba, Italy, May, 1990, L. Moi et al., eds., to be published.

  26. 26. M. A. Ol’shanii, V. G. Minogin, proceedings of the LIKE workshop, Isola D’Elba, Italy, May, 1990, L. Moi et al., eds., to be published.

  27. 27. C. Cohen‐Tannoudji, C. R. Acad. Sci. 252, 394 (1961).
    M. Arditi, T. R. Carver, Phys. Rev. 124, 800 (1961).https://doi.org/PHRVAO

More about the Authors

Claude N. Cohen‐Tannoudji. Collège de France.

William D. Phillips. National Institute of Standards and Technology, Gaithersburg, Maryland.

This Content Appeared In
pt-cover_1990_10.jpeg

Volume 43, Number 10

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.