Neutrino and Dark‐Matter Detection at Low Temperature
DOI: 10.1063/1.881266
It is with shock, and with new respect for the subtleties of condensed matter physics, that the noninitiate (such as I was) first realizes that at low temperatures a microscopic energy—like that associated with a single atom—can be enough to seriously affect the state of a macroscopic body.
References
1. The theme of this article was the topic of three workshops, whose proceedings contain extensive discussions and references: K. Pretzl, N. Schmitz, L. Stodolsky, eds., Proc. Wksp. On Low Temperature Detectors for Neutrinos and Dark Matter, Springer‐Verlag, New York (1987);
L. Gonzalez‐Mestres, D. Perret‐Gallix, Proc. Wksp. on Low Temperature Detectors for Neutrinos and Dark Matter II, Editions Frontières, Gif‐sur‐Yvette, France (1988);
L. Brogiato, D. V. Camin, E. Fiorini, eds., Proc. Wksp. on Low Temperature Detectors for Neutrinos and Dark Matter III, Editions Frontières, Gif‐sur‐Yvette, France (1990).2. S. Simon, Nature 135, 763 (1935). https://doi.org/NATUAS
A. Goetz, Phys. Rev. 55, 1271 (1939). https://doi.org/PHRVAO
H. Andrews, R. D. Fowler, M. C. Williams, Phys. Rev. 76, 154 (1949).https://doi.org/PHRVAO3. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).https://doi.org/PRVDAQ
4. A. K. Drukier, L. Stodolsky, Phys. Rev. D 30, 2295 (1984).https://doi.org/PRVDAQ
5. C. Alvilez, G. Marx, B. Fuenes, Phys. Rev. D 23, 1116 (1981). https://doi.org/PRVDAQ
L. M. Krauss, S. Glashow, D. Schramm, Nature 310, 191 (1984). https://doi.org/NATUAS
See also figure 11 of ref. 4.6. M. Goodman, E. Witten, Phys. Rev. D 31, 309 (1985). https://doi.org/PRVDAQ
I. Wasserman, Phys. Rev. D 33, 2071 (1986).https://doi.org/PRVDAQ7. For some references on dark matter, see V. Trimble, Annu. Rev. Astron. Astrophys. 25, 425 (1987); https://doi.org/ARAAAJ
T. S. van Albada, R. Sancisi, Philos. Trans. R. Soc. Lond., Ser. A 320, 447 (1986);
A. De Rüjula, D. Nanopoulous, P. Shaver, eds., A Unified View of the Micro‐ and Macro‐Cosmos, World Scientific, Singapore (1987);
M. Turner, “Dark Matter in the Universe,” Proc. Nobel Symp. 79, Nobel Committee, Stockholm.8. See the review by J. Primack, D. Seckel, B. Sadoulet, Annu. Rev. Nucl. Part. Sci. 38, 751 (1989).https://doi.org/ARPSDF
9. E. Fiorini, T. O. Ninikoski, Nucl. Instrum. Methods 224, 83 (1984).
10. B. Cabrera, L. Krauss, F. Wilczek, Phys. Rev. Lett. 55, 25 (1984).https://doi.org/PRLTAO
11. S. P. Ahlen, F. T. AvignoneIII, R. L. Brodzinski, A. K. Drukier, G. Gelmini, D. N. Spergel, Phys. Lett. B 195, 603 (1987). https://doi.org/PYLBAJ
For silicon detectors, see D. O. Caldwell et al., Phys. Rev. Lett. 65, 1305 (1990).https://doi.org/PRLTAO12. For early work on superconducting grains, see A. K. Drukier, C. Valette, Nucl. Instrum. Methods 105, 285 (1972); https://doi.org/NUIMAL
D. Hueber, C. Valette, G. Waysand, Nucl. Instrum. Methods 167, 201 (1979). https://doi.org/NUIMAL
For recent work see the workshops in ref. 1. For studies of single grains, see M. Frank, P. Freund, J. Gebauer, K. Pretzl, A. Singsaas, L.. Stodolsky, Nucl. Instrum. Methods A 287, 583 (1990); https://doi.org/NIMAER
M. Frank, P. Freund, J. Gebauer, K. Pretzl, A. Singsaas, L.. Stodolsky, Phys. Lett. B 230, 159 (1989).https://doi.org/PYLBAJ13. W. Seidel, G. Forster, W. Christen, F. von Feilitzsch, H. Göbel, F. Pröbst, R. L. Mössbauer, Phys. Lett. B 236, 483 (1990).https://doi.org/PYLBAJ
14. D. McCammon, in workshop III of ref. 1, p. 213, and private communication.
15. A. Alessandrello, D. V. Camin, E. Fiorini, A. Giuliani, Phys. Lett. B 202, 611 (1988).https://doi.org/PYLBAJ
16. For He 3, see G. R. Pickett, in workshop II of ref. 1, p. 377B.
17. D. J. Goldie, N. E. Booth, C. Patel, G. L. Salmon, Phys. Rev. Lett. 64, 954 (1990). https://doi.org/PRLTAO
T. Peterreins, F. Pröbst, F. von Feilitzsch, R. L. Mössbauer, H. Kraus, Phys. Lett. B 202, 161 (1988). https://doi.org/PYLBAJ
D. Twerenbold, A. Zehnder, J. Appl. Phys. 61, 1 (1987).https://doi.org/JAPIAU18. B. A. Young, B. Cabrera, A. T. Lee, Phys. Rev. Lett. 64, 2795 (1990).https://doi.org/PRLTAO
19. R. E. Lanou, H. J. Maris, G. M. Seidel, Phys. Rev. Lett. 58, 2498 (1987). https://doi.org/PRLTAO
H. Kinder, in workshop III of ref. 1, p. 305.20. A. Cummings et al., “Performance of a 60 Gram Cryogenic Detector,” Center for Particle Astrophysics, U. Calif., Berkeley (1990).
21. F. T. AvignoneIII et al., Phys. Lett. B 256, 559 (1991).https://doi.org/PYLBAJ
22. M. Bühler, E. Umlauf, Europhys. Lett. 5, 297 (1988).https://doi.org/EULEEJ
23. For a survey of these issues, see L. Stodolsky, A. Bottino, P. Monacelli, eds., TAUP ‘89, Editions Frontières, Gif‐sur‐Yvette, France (1989), p. 2.
More about the Authors
Leo Stodolsky. Max Planck Institute for Physics, Munich, Germany.