Discover
/
Article

Modern Tests of Special Relativity

MAY 01, 1987
Recent experiments that provide the strictest limits on violations of Lorentz invariance may be viewed as direct descendants of the Michelson‐Morley experiment.
Mark P. Haugan
Clifford M. Will

From our perspective one hundred years after the fact, the null result of the Michelson‐Morley ether‐drift experiment clearly marked the beginning of the end for the Newtonian notions of absolute space and time. At the time, however, it took 20 years of work by H. A. Lorentz, Henri Poincaré and others for most physicists to come to the same conclusion. In 1887, fundamental physics appeared to be essentially complete. Newtonian mechanics and Maxwell’s electrodynamics were in hand, and a grand unification of physics seemed within reach. It was expected that a purely mechanistic basis for the ether interpretation of Maxwell’s equations could be constructed and would provide a final unity of physics. This was a concise and powerful world view that was not easily discarded, but the null result of Michelson‐Morley challenged its very heart.

This article is only available in PDF format

References

  1. 1. A. A. Michelson, E. H. Morley, Am. J. Sci. 34, 333 (1887).https://doi.org/AJSCAP

  2. 2. H. A. Lorentz, letter to Lord Rayleigh, dated 18 August 1892;
    reprinted in R. S. Shankland, Am. J. Phys. 32, 16 (1964).https://doi.org/AJPIAS

  3. 3. H. A. Lorentz, Proc. Amsterdam Acad. 6, 809 (1904).
    H. Poincaré, Bull. Sci. Math. 28, 302 (1904).https://doi.org/BSMQA9

  4. 4. A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).https://doi.org/ANPYA2

  5. 5. C. Will, ed., Accuracy of Time Transfer in Satellite Systems, Nat. Acad. P., Washington (1986).

  6. 6. G. P. Lepage, D. R. Yennie, in Precision Measurements and Foundamental Constants II. B. N. Taylor, W. D. Phillips, eds., NBS Special Publication 617 (1984).

  7. 7. A. Zee, Phys. Rev. D 25, 1864 (1982).https://doi.org/PRVDAQ

  8. 8. P. R. Phillips, Phys. Rev. 146, 966 (1966).https://doi.org/PHRVAO

  9. 9. P. Lubin, T. Villela, G. Epstein, G. Smoot, Astrophys. J. 298, L1 (1985).https://doi.org/ASJOAB

  10. 10. H. E. Ives, G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938); https://doi.org/JOSAAH
    H. E. Ives, G. R. Stilwell, J. Opt. Soc. Am. 31, 369 (1941).https://doi.org/JOSAAH

  11. 11. M. Kaivola, O. Poulsen, E. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).https://doi.org/PRLTAO

  12. 12. V. W. Hughes, H. G. Robinson, V. Beltran‐Lopez, Phys. Rev. Lett. 4, 342 (1960). https://doi.org/PRLTAO
    R. W. P. Drever, Philos. Mag. 6, 683 (1961).https://doi.org/PHMAA4

  13. 13. H. P. Robertson, Rev. Mod. Phys. 21, 378 (1949).https://doi.org/RMPHAT

  14. 14. R. J. Kennedy, E. M. Thorndike, Phys. Rev. 42, 400 (1932).https://doi.org/PHRVAO

  15. 15. R. H. Dicke, in Relativity. Groups andTopology, C. DeWitt, B. DeWitt, eds., Gordon and Breach, New York (1964).
    L. I. Schiff, Am. J. Phys. 28, 340 (1960). https://doi.org/AJPIAS
    K. S. Thorne, A. P. Lightman, D. L. Lee, Phys. Rev. D 7, 3563 (1973). https://doi.org/PRVDAQ
    A. P. Lightman, D. L. Lee, Phys. Rev. D 8, 364 (1973). https://doi.org/PRVDAQ
    K. NordvedtJr., Phys. Rev. D 11, 245 (1975). https://doi.org/PRVDAQ
    C. M. Will, Phys. Rev. D 10, 2330 (1974). https://doi.org/PRVDAQ
    M. P. Haugan, Ann. Phys. (NY) 118, 156 (1979).https://doi.org/APNYA6

  16. 16. A. Brillet, J. L. Hall, Phys. Rev. Lett. 42, 549 (1979).https://doi.org/PRLTAO

  17. 17. J. D. Prestage, J. J. Bollinger, W. M. Itano, D. J. Wineland, Phys. Rev. Lett. 54, 2387 (1985).https://doi.org/PRLTAO

  18. 18. S. K. Lamoreaux, J. P. Jacobs, B. R. Heckel, F. J. Raab, E. N. Fortson, Phys. Rev. Lett. 57, 3125 (1986).https://doi.org/PRLTAO

  19. 19. E. Fischbach, M. P. Haugan, D. Tadic, H.‐Y. Cheng, Phys. Rev. D 32, 154 (1985).https://doi.org/PRVDAQ

  20. 20. D. C. Champeney, G. R. Issac, A. M. Khan, Phys. Lett. 7, 241 (1963). https://doi.org/PHLTAM
    K. C. Turner, H. A. Hill, Phys. Rev. B 134, 252 (1964).
    G. R. Isaakm, Phys. Bull. 21, 255 (1970).https://doi.org/PHSBB4

  21. 21. R. V. Eötvös, D. Pekar, E. Fekete, Ann. Phys. (Leipzig) 68, 11 (1922). https://doi.org/ANPYA2
    P. G. Roll, R. Krotkov, R. H. Dicke, Ann. Phys. (NY) 26, 442 (1964). https://doi.org/APNYA6
    V. B. Braginsky, V. I. Panov, Sov. Phys. JETP 34, 464 (1971).https://doi.org/SPHJAR

More about the Authors

Mark P. Haugan. Purdue University, West Lafayette, Indiana.

Clifford M. Will. McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1987_05.jpeg

Volume 40, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.