Discover
/
Article

Modern Classical Physics Through the Work of G. I. Taylor

MAY 01, 2000
One scientist’s work provides material for an entire course, covering topics ranging from hydrodynamic stability and turbulence to electrohydrodynamics and the locomotion of small organisms.
Michael P. Brenner
Howard A. Stone

During the spring of 1998 we co‐taught a graduate course on modern classical physics that aimed to cover the fundamentals while also conveying the directions and sense of current research. As we talked about the subject, we realized that many of the important discoveries underlying a wide range of topics of current interest in physics and engineering were made by a single individual, the British scientist Geoffrey Ingram (G. I.) Taylor (1886–1975). Although many researchers are familiar with one or another of Taylor’s contributions, few seem to be aware of the incredible breadth of his scientific publications and their relevance to important research questions today. The same person who is commonly remembered as the namesake for several basic fluid flow instabilities (Taylor–Couette, Rayleigh–Taylor, and Saffman–Taylor) also was the first to show experimentally that a diffraction pattern produced by shining light on a needle does not change when the intensity of light is decreased. And these topics are only the beginning. Taylor made fundamental contributions to turbulence, championing the need for developing a statistical theory, and performing the first measurements of the effective diffusivity and viscosity of the atmosphere. He wrote one of the first scientific papers using random walks; gave the first consistent theory of the structure of shocks in gases; and explained the importance of dislocations for determining the strength of solids. He also described the counterintuitive physics of fluid motion in a rotating environment, providing the basic principles for important aspects of atmospheric and oceanic dynamics.

This article is only available in PDF format

More about the authors

Michael P. Brenner, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Howard A. Stone, Harvard University, Cambridge, Massachusetts.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_2000_05.jpeg

Volume 53, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.