Discover
/
Article

Micromagnetic Microscopy and Modeling

APR 01, 1995
The development of new imaging techniques and increasingly powerful computer simulations is rapidly advancing our understanding of magnetization at submicron scales—a regime of great interest to developers of magnetic technologies such as magneto‐optical storage media.
E. Dan Dahlberg
Jian‐Gang Zhu

With the miniaturization of magnetic technologies, the need to understand magnetization on length scales below a micron is becoming increasingly important. This booming interest in micro magnetics has fueled a renaissance in both micro‐magnetic modeling and measurement techniques. Conversely, the codevelop‐ment of modeling and imaging has made possible recent advances in this critical area of magnetism. On the modeling side, the rapid development of high‐speed computing has had a tremendous impact on micromagnetics simulations. On the measurement side, a number of microscopies have been developed for imaging on a length scale of tens of nanometers. Figure 1 shows an image of rows of bits in a magneto‐optical medium. The bits were both written and imaged using a magnetic force microscope. Results on this length scale provide information that can be used in models and also challenge models’ predictive capabilities. The image on the cover of this issue shows naturally occurring domain patterns in a single‐crystal ferrite, a system that exhibits extremely complex magnetic stmctures.

This article is only available in PDF format

References

  1. 1. W. F. Brown Jr, Micromagnetics, Wiley, New York (1963).

  2. 2. S. Shtrikman, D. Treves, in Magnetism III, G. T. Rado, H. Suhl, eds., Academic, New York (1963), p. 395.

  3. 3. J.‐G. Zhu, H. N. Bertram, J. Appl. Phys. 63, 3248 (1988).https://doi.org/JAPIAU

  4. 4. J.‐G. Zhu, H. N. Bertram, IEEE Trans. Magn. 27, 3553 (1991).https://doi.org/IEMGAQ

  5. 5. M. Lederman, S. Schultz, M. Ozaki, Phys. Rev. Lett. 73, 1986 (1994).https://doi.org/PRLTAO

  6. 6. R. B. Proksch, S. Foss, E. D. Dahlberg, IEEE Trans. Magn. 30, 4467 (1994).https://doi.org/IEMGAQ

  7. 7. P. Grütter, D. Rugar, H. J. Mamin, Ultramicroscopy 47, 393 (1992).https://doi.org/ULTRD6

  8. 8. R. B. Proksch, B. M. Moskowitz, E. D. Dahlberg, T. A. Schaeffer, D. A. Bazylinski, R. B. Frankel, “Magnetic Force Microscopy of the Submicron Magnetic Assembly in a Magnetotactic Bacterium,” to appear in Appl. Phys. Lett.

  9. 9. W. Rave, L. Belliard, M. Labrune, A. Thiaville, J. Miltat, IEEE Trans. Magn. 30, 4473 (1994).https://doi.org/IEMGAQ

  10. 10. T. Ohkubo, J. Kishigami, K. Yanagisawa, R. Kaneko, IEEE Trans. Magn. 6, 5286 (1991).https://doi.org/IEMGAQ

  11. 11. S. Manalis, K. Babcock, M. Dugas, J. Massie, V. Elings, “Submicron Studies of Recording Media Using Thin Film Magnetic Scanning Probes,” to appear in Appl. Phys. Lett.

  12. 12. M. R. Scheinfein, J. Unguris, M. H. Kelley, D. T. Pierce, R. J. Celotta, Rev. Sci. Instrum. 61, 2501 (1990).https://doi.org/RSINAK

  13. 13. J. Unguris, M. R. Scheinfein, R. J. Celotta, D. T. Pierce, in Chemistry and Physics of Solid Surfaces VIII, R. Vanselow, R. Howe, eds., Springer‐Verlag, New York (1990), p. 239.

  14. 14. E. Betzig, J. K. Trautmann, Science 257, 189 (1992). https://doi.org/SCIEAS
    D. W. Pohl, in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds., Academic, London (1990), p. 243.

  15. 15. S. A. Crooker, D. A. Tulchinsky, J. Levy, D. D. Awschalom, R. Garcia, N. Samarth, “Enhanced Spin Interactions in Digital Magnetic Heterostructures,” preprint, U. Calif., Santa Barbara (1994).

  16. 16. M. Mankos, P. de Haan, V. Kambersky, G. Matteucci, M. R. McCartney, Z. J. Yang, M. R. Scheinfein, J. M. Cowley, in Electron Holography, A. Tonomura, ed., Elsevier Science, Amsterdam (1995).

More about the Authors

E. Dan Dahlberg. Magnetic Microscopy Center, University of Minnesota in Minneapolis.

Jian‐Gang Zhu. University of Minnesota.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1995_04.jpeg

Volume 48, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.