Microchannel plates
DOI: 10.1063/1.3037791
For more than forty years researchers have applied the phenomenon of photoemission to convert absorbed incident radiation into an electron stream, which is then amplified by a secondary‐emission process. The resulting fast high‐gain photon detectors, such as photomultipliers and electron multipliers, are among the fastest and most sensitive devices for recording the collision of a photon (or electron, atom or energetic ion) with a target surface. These detectors have gained wide acceptance in research instrumentation, particularly in mass spectroscopy and scintillation spectroscopy, as well as in optical ranging and optical communication systems. Recently a new—faster, less noisy and more efficient—type of radiation detector has been developed, consisting of a plate traversed by a large number of microscopic channels that serve as electron multipliers.
References
1. F. W. White, Mass Spectrometry in Science and Technology, Wiley, New York (1968).
2. J. Birks, The Theory and Practice of Scintillation Counting, Pergamon, New York (1964).
3. T. E. McGunigal, W. J. Carion, L. O. Candill, C. R. Grant, T. S. Johnson, D. A. Premo, P. O. Spadin, G. C. Winston, WESCON Tech. Papers 19, 1 (1975).
4. H. Melchior, M. B. Fisher, F. R. Arams, Proc. IEEE 58, 1466 (1970).https://doi.org/IEEPAD
5. W. C. Wiley, C. F. Hendee, IRE Trans. Nucl. Sci. NS‐9, 103 (1962).https://doi.org/IRNSAM
6. A. W. Woodhead, G. Eschard, Acta Electronica 14, 181 (1971).https://doi.org/ACELAZ
7. W. B. Colson, J. McPherson, F. T. King, Rev. Sci. Instr. 44, 1964 (1973).https://doi.org/RSINAK
8. J. P. Boutot, G. Eschard, R. Polaert, V. Duchenois, in Advances in Electronics and Electron Physics, volume 40A, Academic, New York (1976), page 103.
9. J. G. Timothy, R. L. Bybee, Rev. Sci. Instr. 48, 292 (1977).https://doi.org/RSINAK
10. D. H. Ceckowski, E. H. Eberhardt, Microchannel Plate Photomultipliers and Related Devices (Microchannel Plates Detector Workshop, Lawrence Berkeley Laboratory), University of California, Berkeley (1976).
11. D. J. Ruggieri, IEEE Trans. Nucl. Sci. NS‐19, 74 (1972).https://doi.org/IETNAE
12. J. T. Timothy, R. L. Bybee, Appl. Opt. 14, 1632 (1975).https://doi.org/APOPAI
13. A. L. Broadfoot, B. R. Sandel, Appl. Opt. 16, 1533 (1977).https://doi.org/APOPAI
14. W. Parker, R. Gott, K. A. Pounds, IEEE Trans. Nucl. Sci. NS‐17, 360 (1970).https://doi.org/IETNAE
15. R. J. Archuleta, S. E. DeForest, Rev. Sci. Instr. 42, 89 (1971).https://doi.org/RSINAK
16. S. A. Fields, J. L. Burch, W. A. Oran, Rev. Sci. Inst. 48, 1676 (1977).https://doi.org/RSINAK
17. G. Pietri, IEEE Trans. Nucl. Sci. NS‐22, 2084 (1975).https://doi.org/IETNAE
18. J. G. Timothy, R. L. Bybee, Rev. Sci. Instr. 46, 1615 (1975).https://doi.org/RSINAK
19. M. Lompton, R. F. Malina, Rev. Sci. Instr. 47, 1360 (1976).https://doi.org/RSINAK
20. B. Leskovar, C. C. Lo, Nucl. Instr. Meth. 123, 145 (1975).https://doi.org/NUIMAL
21. B. Leskovar, C. C. Lo, P. R. Hartig, K. Sauer, Rev. Sci. Instr. 47, 113 (1976).https://doi.org/RSINAK
22. W. Mailing, F. Stary, Nanosecond Pulse Techniques, Gordon and Breach, New York (1968).
23. C. C. Lo, P. Lecomte, B. Leskovar, IEEE Trans. Nucl. Sci. NS‐24, 302 (1977).https://doi.org/IETNAE
24. B. R. Sandel, A. L. Broadfoot, D. E. Shemansky, Appl. Opt. 16, 1435 (1977).https://doi.org/APOPAI
More about the Authors
Branko Leskovar. University of California.