Laser selective chemistry—is it possible?
DOI: 10.1063/1.2913821
One of the main goals of chemists is to understand the “alchemy” that leads to the building and breaking of molecules. There are many different ways of approaching this goal. One of these is photochemistry, the cracking of molecules by adding energy in the form of light to break bonds in the molecules. The resulting bond breakage is in most cases limited by statistical thermodynamic laws. With sufficiently brief and intense laser radiation properly tuned to specific resonances, we hope to bypass the statistical laws and break molecules precisely where we want to break them. Intellectually this is a challenging problem; if we succeed, laser selective chemistry may also have application in various areas of pure and applied chemistry and, perhaps, in medicine.
References
1. P. J. Robinson, K. A. Holbrook, Unimolecular Reactions, Wiley‐Interscience, New York (1972).
2. For a review, see: J. Jortner, S. Mukamel, in The World of Quantum Chemistry, Riedel Boston (1974), page 145.
3. I. Oref, B. S. Rabinovitch, Acc. Chem. Res. 12, 166 (1979).https://doi.org/ACHRE4
4. E. Thiele, M. Goodman, J. Stone, Opt. Eng. 19, 10 (1980).https://doi.org/OPEGAR
5. N. Bloembergern, E. Yablonovitch, PHYSICS TODAY, May 1978, page 83.
6. A. H. Zewail, Acc. Chem. Res. 13, 360 (1980); https://doi.org/ACHRE4
J. W. Perry, A. H. Zewail, J. Chem. Phys. 70, 583 (1979); https://doi.org/JCPSA6
D. D. Smith, A. H. Zewail, J. Chem. Phys. 71, 540 (1979); https://doi.org/JCPSA6
J. W. Perry, A. H. Zewail, Chem. Phys. Lett. 65, 31 (1979).https://doi.org/CHPLBC7. A. C. Albrecht, in Advances in Laser Chemistry, A. H. Zewail, ed., Springer Series in Chemical Physics, Springer, New York (1978);
B. Henry, Acc. Chem. Res. 10, 207 (1977).https://doi.org/ACHRE48. R. G. Bray, M. J. Berry, J. Chem. Phys. 71, 4909 (1979);
D. Heller, S. Mukamel, J. Chem. Phys. 70, 463 (1979); https://doi.org/JCPSA6
M. Sage, J. Jortner, Chem. Phys. Lett. 62, 451 (1979).https://doi.org/CHPLBC9. R. Smalley, L. Wharton, D. Levy, Acc. Chem. Res. 10, 139 (1977).https://doi.org/ACHRE4
10. J. W. Perry, A. H. Zewail, J. Phys. Chem., to be published.
11. R. M. Hochstrasser, D. S. King, J. Am. Chem. Soc. 97, 4760 (1975).https://doi.org/JACSAT
12. K. V. Reddy, M. J. Berry, Chem. Phys. Lett. 66, 223 (1979).https://doi.org/CHPLBC
13. R. Hall, A. Kaldor, J. Chem. Phys. 70, 4027 (1979).https://doi.org/JCPSA6
14. R. A. Marcus, D. W. Noid, M. Koszykowski, in Advances in Laser Chemistry, A. H. Zewail, ed., Springer, New York (1978) page 298.
D. Noid, R. Marcus, J. Chem. Phys. 67, 559 (1977); https://doi.org/JCPSA6
D. Noid, R. Marcus, Chem. Phys. Letts. 73, 269 (1980);
D. Noid, R. Marcus, J. Chem. Ed. 57, 624 (1980).https://doi.org/JCEDA815. S. A. Rice, Advances in Laser Chemistry, A. H. Zewail, ed., Springer, New York (1978), page 2, and references therein.
16. R. Stratt, N. Handy, W. Miller, J. Chem. Phys. 71, 3311 (1979).https://doi.org/JCPSA6
17. M. Davis, E. Stechel, E. Heller, “Quantum Dynamics in Classically Integrable and Nonintegrable Regions,” Chem. Phys. Lett., in press;
E. J. Heller, J. Chem. Phys. 72, 1337 (1980).https://doi.org/JCPSA6
More about the Authors
Ahmed H. Zewail. California Institute of Technology.