Discover
/
Article

Laser action in liquids

NOV 01, 1967
Reduction of radiationless relaxation has led to new liquid lasers that are at least equivalent in performance to pulsed crystal and glass lasers.
Adam Heller

LIQUID‐LASER RESEARCH, as many other fields in science, has oscillated between periods of activity and semislumber. In the period immediately following the first papers suggesting the possibility of light amplification by stimulated emission, the search for liquid‐laser materials was at least as active as the search for solids or gases. However, unlike research on solids and gases, research on liquids did not produce active materials. This initial failure led most of the industrial and academic laboratories to discontinue work on liquids and to concentrate on gaseous and solid‐state systems, in which tremendous progress has been made over the last eight years.

This article is only available in PDF format

References

  1. 1. R. H. Dicke, US Patent 2 851 652 (9 Sept. 1958);
    “The Coherence Brightened Laser,” p. 35 in Quantum Electronics III, Vol. 1 (P. Grivet, N. Bloembergen, eds.), Columbia U. Press, New York (1964);
    A. M. Prokhorov, Soviet Phys.—JETP 34, 1140 (1958); https://doi.org/SPHJAR
    A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).https://doi.org/PHRVAO

  2. 2. A. Lempicki, H. Samelson, Phys. Letters 4, 133 (1963).https://doi.org/PHLTAM

  3. 3. E. J. Schimitschek, paper presented at the Chemical Laser Conference, 9–11 Sept. 1964, San Diego, Calif.;
    E. J. Schimitschek, R. B. Nehrich, J. A. Trias, J. Chem. Phys. 42, 788 (1965).https://doi.org/JCPSA6

  4. 4. G. A. Crosby, Molecular Crystals 1, 33 (1966);
    A. Lempicki, H. Samelson, C. Brecher, Appl. Optics suppl. 2, 205 (1965).

  5. 5. H. Samelson, A. Lempicki, C. Brecher, V. Brophy, Appl. Phys. Letters 5, 173 (1964); https://doi.org/APPLAB
    H. Samelson, C. Brecher, A. Lempicki, J. Chim. Phys. 64, 165 (1967).https://doi.org/JCPBAN

  6. 6. A. Lempicki, H. Samelson, C. Brecher, J. Chem. Phys. 41, 1214 (1964).https://doi.org/JCPSA6

  7. 7. E. J. Schimitschek, R. B. Nehrick, J. A. Trias, Appl. Phys. Letters 9, 103 (1966).https://doi.org/APPLAB

  8. 8. S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, N. Filipescu, Appl. Phys. Letters 10, 160 (1967).https://doi.org/APPLAB

  9. 9. P. P. Sorokin, J. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).https://doi.org/IBMJAE

  10. 10. A. Lempicki, H. Samelson, “Organic Liquid Lasers,” in Lasers: A Series of Advances, Vol. 1 (A. K. Levine, ed.), Dekker, New York (1966).

  11. 11. P. P. Sorokin, W. H. Culver, E. C. Hammond, J. R. Lankard, IBM J. Res. Develop. 10, 401 (1966); https://doi.org/IBMJAE
    P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Develop. 11, 130 (1967).https://doi.org/IBMJAE

  12. 12. F. P. Schäfer, W. Schmidt, J. Voltze, Appl. Phys. Letters 9, 306 (1966).https://doi.org/APPLAB

  13. 13. M. L. Spaeth, D. P. Bortfeld, Appl. Phys. Letters 9, 179 (1966).https://doi.org/APPLAB

  14. 14. B. B. McFarland, Appl. Phys. Letters 10, 208 (1967).https://doi.org/APPLAB

  15. 15. F. P. Schäfer, W. Schmidt, K. Marth, Phys. Letters 24A, 280 (1967).

  16. 16. P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Develop. 11, 147 (1967); https://doi.org/IBMJAE
    P. P. Sorokin, J. R. Lankard, IBM J. Res. Develop. 11, 148 (1967).https://doi.org/IBMJAE

  17. 17. S. Claesson, L. Lindquist, Arkiv Kemi 12, 1 (1958).https://doi.org/ARKEAD

  18. 18. E. Snitzer, Appl. Optics 5, 1487 (1966).https://doi.org/APOPAI

  19. 19. A. Heller, “On the Enhancement of the Fluorescence of Aqueous Solutions of Neodymium, Samarium and Dysprosium Chlorides/” p. 77 in Fifth Rare‐Earth Research Conference, Book 1, Inst. for Atomic Research, Iowa State U., Ames, Iowa (1965).

  20. 20. C. A. Hutchinson, B. W. Magnum, J. Chem. Phys. 32, 1261 (1960).https://doi.org/JCPSA6

  21. 21. M. R. Wright, R. P. Frosch, G. W. Robinson, J. Chem. Phys. 33, 934 (1960).https://doi.org/JCPSA6

  22. 22. J. L. Kropp, M. W. Windsor, J. Chem. Phys. 39, 2769 (1963); https://doi.org/JCPSA6
    J. L. Kropp, M. W. Windsor, J. Chem. Phys. 42, 1599 (1965).https://doi.org/JCPSA6

  23. 23. J. J. Freeman, G. A. Crosby, K. E. Lawson, J. Mol. Spectry. 13, 399 (1964).https://doi.org/JMOSA3

  24. 24. K. C. Chatterjee, L. S. Forster, Spectrochim. Acta 20, 1603 (1964).https://doi.org/SPACA5

  25. 25. D. D. Pant, D. N. Pande, H. C. Pant, Indian J. Pure Appl. Phys. 4, 289 (1966).https://doi.org/IJOPAU

  26. 26. A. Heller, J. Am. Chem. Soc. 88, 2058 (1966).https://doi.org/JACSAT

  27. 27. A. Heller, Appl. Phys. Letters 9, 106 (1966).https://doi.org/APPLAB

  28. 28. A. Heller, J. Am. Chem. Soc. 89, 167 (1966).https://doi.org/JACSAT

  29. 29. G. E. Peterson, P. M. Brindenbaugh, J. Opt. Soc. Am. 54, 644 (1964).https://doi.org/JOSAAH

  30. 30. J. G. Edwards, Nature 212, 752 (1966); https://doi.org/NATUAS
    J. Pantoflicek, Czech. J. Phys. B17, 27 (1967).

  31. 31. A. Lempicki, A. Heller, Appl. Phys. Letters 9, 108 (1966); https://doi.org/APPLAB
    A. Lempicki, H. Samelson, V. Brophy, A. Heller, Bull. Am. Phys. Soc. 12, 563 (1967).https://doi.org/BAPSA6

  32. 32. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, IEEE J. QE2, 442 (1966);
    R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, V. S. Letokhov, Soviet Phys.—JETP 24, 481 (1967).https://doi.org/SPHJAR

  33. 33. D. A. Stetser, A. J. DeMaria, Appl. Phys. Letters 9, 118 (1966).https://doi.org/APPLAB

More about the Authors

Adam Heller. General Telephone and Electronics Laboratories.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1967_11.jpeg

Volume 20, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.