Discover
/
Article

Interstellar molecules

MAR 01, 1973
Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy.
Philip M. Solomon

During the past three years, molecules have been discovered in interstellar clouds with an abundance and chemical complexity totally unexpected by astrophysicists. Twenty‐three molecules in a total of 34 isotopic combinations have now been identified through radio spectral line observations at more than 75 wavelengths from 2 millimeters to 36 centimeters. An important new chapter in astronomy has begun, with potential already demonstrated for providing new information and insights into such basic problems as the cosmic abundance of isotopes, formation of stars, structure of the Galaxy and the Galactic nucleus, and the thermodynamics of the interstellar medium. Equally important, many completely new phenomena have revealed themselves as it becomes clear that the most massive objects in the Galaxy are molecular clouds (see figure 1), and the physics of these regions is only now being explored. In addition an entirely new field, interstellar chemistry, is developing now that we know that chemical evolution of matter into substances as complex as organic molecules has taken place throughout the Galaxy.

This article is only available in PDF format

References

  1. 1. W. S. Adams, Astrophys. J. 109, 354 (1948).https://doi.org/ASJOAB

  2. 2. S. Weinreb, A. H. Barrett, M. L. Meeks, J. C. Henry, Nature 200, 829 (1963).https://doi.org/NATUAS

  3. 3. C. H. Townes in Proceedings of the Fourth Symposium of the International Astronomical Union, (H. C. Van de Hulst, ed.) 1957, page 92.

  4. 4. A. C. Cheung, D. M. Rank, C. H. Townes, D. C. Thornton, W. J. Welch, Phys. Rev. Lett. 21, 1701 (1968); https://doi.org/PRLTAO
    A. C. Cheung, D. M. Rank, C. H. Townes, D. C. Thornton, W. J. Welch, Nature 221, 626 (1969).https://doi.org/NATUAS

  5. 5. C. Heiles, Astrophys. J. 151, 919 (1968).https://doi.org/ASJOAB

  6. 6. P. M. Solomon, N. C. Wickramasinghe, Astrophys. J. 158, 449 (1969); https://doi.org/ASJOAB
    D. Hollenbach, M. W. Werner, E. E. Salpeter, Astrophys. J. 163, 165 (1971).https://doi.org/ASJOAB

  7. 7. L. E. Snyder, D. Buhl, B. Zuckerman, P. Palmer, Phys. Rev. Lett. 22, 679 (1969); https://doi.org/PRLTAO
    B. Zuckerman, D. Buhl, P. Palmer, L. E. Snyder, Astrophys. J. 160, 485 (1970); https://doi.org/ASJOAB
    P. Palmer, B. Zuckerman, D. Buhl, L. E. Snyder, Astrophys. J. 156, L147 (1969).https://doi.org/ASJOAB

  8. 8. A. A. Penzias, R. W. Wilson, Astrophys. J. 142, 419 (1965).https://doi.org/ASJOAB

  9. 9. R. W. Wilson, K. B. Jefferts, A. A. Penzias, Astrophys. J. 161, L43 (1970); https://doi.org/ASJOAB
    A. A. Penzias, K. B. Jefferts, R. W. Wilson, Astrophys. J. 165, 229 (1971).https://doi.org/ASJOAB

  10. 10. P. M. Solomon, N. Z. Scoville, A. A. Penzias, R. W. Wilson, K. B. Jefferts, Astrophys. J. 178, 125 (1972); https://doi.org/ASJOAB
    N. Z. Scoville, P. M. Solomon, Astrophys. J. 180, 55 (1973).https://doi.org/ASJOAB

  11. 11. P. M. Solomon in Proceedings of the 1971 National Radio Astronomy Observatory Symposium on Interstellar Molecules (M. A. Gordon, ed.) Wiley, New York (1973);
    A. A. Penzias, P. M. Solomon, R. W. Wilson, K. B. Jefferts, Astrophys. J. 174, L43 (1972).https://doi.org/ASJOAB

  12. 12. A. A. Penzias, P. M. Solomon, R. W. Wilson, K. B. Jefferts, Astrophys. J. 168, L53 (1971).https://doi.org/ASJOAB

  13. 13. P. Thaddeus, R. W. Wilson, M. Kutner, A. A. Penzias, K. B. Jefferts, Astrophys. J. 168, L59 (1971).https://doi.org/ASJOAB

  14. 14. L. E. Snyder, D. Buhl, Astrophys. J. 163, L47 (1971).https://doi.org/ASJOAB

  15. 15. A. H. Barrett, P. R. Schwarz, J. W. Waters, Astrophys. J. 168, L101 (1971).https://doi.org/ASJOAB

  16. 16. A. C. Cheung, D. M. Rauk, C. H. Townes, W. J. Welch, Nature 221, 917 (1969).https://doi.org/NATUAS

  17. 17. P. M. Solomon, K. B. Jefferts, A. A. Penzias, R. W. Wilson, Astrophys. J. 168, L107 (1971).https://doi.org/ASJOAB

  18. 18. B. J. Robinson, R. X. McGee, Austr. J. Phys. 23, 405 (1970).

  19. 19. N. Z. Scoville, P. M. Solomon, P. Thaddeus, Astrophys. J. 172, 335 (1972).https://doi.org/ASJOAB

  20. 20. N. Z. Scoville, Astrophys. J. 175, L127 (1972).https://doi.org/ASJOAB

  21. 21. A. A. Penzias, K. B. Jefferts, R. W. Wilson, H. S. Liszt, P. M. Solomon, Astrophys. J. 178, L35 (1972).https://doi.org/ASJOAB

  22. 22. R. W. Wilson, A. A. Penzias, K. B. Jefferts, P. Thaddeus, M. Kutner, Astrophys. J. 176, L77 (1972).https://doi.org/ASJOAB

  23. 23. V. J. Bortolot, P. Thaddeus, Astrophys. J. 175, L17 (1972); https://doi.org/ASJOAB
    P. A. Vanden Bout, Astrophys. J. 176, L127 (1972).https://doi.org/ASJOAB

  24. 24. K. B. Jefferts, A. A. Penzias, R. W. Wilson, Astrophys. J. 179, L57 (1973); https://doi.org/ASJOAB
    R. W. Wilson, A. A. Penzias, K. B. Jefferts, P. M. Solomon, Astrophys. J. 180, 15 March (1973).https://doi.org/ASJOAB

  25. 25. P. M. Solomon, N. J. Woolf, Astrophys. J. 180, L89 (1973).https://doi.org/ASJOAB

  26. 26. L. Spitzer, in Proceedings of the 1973 New Mexico Meeting of the AAS.

  27. 27. D. A. Cesarsky, A. T. Moffet, J. M. Pasachoff, Astrophys. J. 180, L1 (1973).https://doi.org/ASJOAB

  28. 28. B. Turner, Astrophys. J. 163, L35 (1971).https://doi.org/ASJOAB

  29. 29. J. A. Ball, C. Z. Gottlieb, A. E. Lilley, H. E. Radford, Astrophys. J. 162, L203 (1970).https://doi.org/ASJOAB

  30. 30. P. M. Solomon, W. Klemperer, Astrophys. J. 178, 389 (1972).https://doi.org/ASJOAB

  31. 31. W. D. Watson, E. E. Salpeter, Astrophys. J. 175, 659 (1972).https://doi.org/ASJOAB

More about the Authors

Philip M. Solomon. University of Minnesota, Minneapolis.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1973_03.jpeg

Volume 26, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.