Discover
/
Article

Interactions of Ultra‐Intense Laser Light with Matter

JAN 01, 1995
Generating plasma beat waves with extremely short and intense laser pulses may turn out to be the easiest way to accelerate electrons to a trillion electron volts.
Chandrashekhar J. Joshi
Paul B. Corkum

When the laser made its debut in 1960, it was often called a solution looking for a problem. Today the laser is hailed as one of the most significant inventions of the 20th century. Lasers are used in almost all fields of science and technology, and they have become commonplace in daily life, from supermarket scanners to CD players. The recent development of ultrahigh‐power lasers has opened exciting research opportunities in the field of laser‐matter interactions. They range from the interaction of laser light with single atoms to collective effects in plasmas.

This article is only available in PDF format

References

  1. 1. D. Strickland, G. Mourou, Opt. Commun. 56, 216 (1985). https://doi.org/OPCOB8
    M. Perry, G. Mourou, Science 264, 917 (1994).https://doi.org/SCIEAS

  2. 2. See, for example, J. Opt. Soc. Am. B 7(4) (1990).https://doi.org/JOBPDE

  3. 3. S. Augst, D. Strickland, D. Meyerhoff, S. L. Cin, J. Eberly, Phys. Rev. Lett. 63, 2212 (1989). https://doi.org/PRLTAO
    M. Perry, A. Szoeke, O. Landen, E. Campbell, Phys. Rev. Lett. 60, 1207 (1988).https://doi.org/PRLTAO

  4. 4. P. B. Corkum, N. H. Burnett, F. Brunell, Phys. Rev. Lett. 62, 1259 (1989). https://doi.org/PRLTAO
    N. H. Burnett, P. B. Corkum, J. Opt. Soc. Am. B 6, 1196 (1989). https://doi.org/JOBPDE
    P. B. Corkum, N. Burnett, F. Brunel, in Atoms in Intense Fields, M. Gavrila, ed., Academic, New York (1992) p. 109.
    W. Leemans, C. Clayton, W. Mori, K. Marsh, A. Dyson, C. Joshi, Phys. Rev. Lett. 68, 321 (1992). https://doi.org/PRLTAO
    A. Offenberger, W. Blyth, A. Dangor, A. Djaoui, M. Key, Z. Najmudin, S. Wark, Phys. Rev. Lett. 71, 3983 (1993).https://doi.org/PRLTAO

  5. 5. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. E. Geusic, Phys. Rev. Lett. 59, 1092 (1987).https://doi.org/PRLTAO

  6. 6. Y. Nagatasa, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, K. Toyoda, Phys. Rev. Lett. 71, 3774 (1993). https://doi.org/PRLTAO
    B. Lemoff et al., to be published in Phys. Rev. Lett.

  7. 7. C. Durfee, H. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).https://doi.org/PRLTAO

  8. 8. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. McIntyre, K. Boyer, C. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987). https://doi.org/JOBPDE
    A. L’Huillier, L. Lompre, G. Mainfray, C. Manus, in Atoms in Intense Laser Fields, M. Gavrila, ed., Academic, New York (1992) p. 139.
    J. J. Macklin, J. D. Kmetec, C. L. GordonIII, Phys. Rev. Lett. 70, 766 (1993). https://doi.org/PRLTAO
    K. Budil, T. Ditmire, M. Perry, P. Baclou, P. Salieres, A. L’Huillier, to be published in Opt. Lett.,
    J. Kraus, K. Schafer, K. Kulander, Phys. Rev. Lett. 68, 3535 (1992).https://doi.org/PRLTAO

  9. 9. D. Fittinghoff, P. Bolton, B. Chang, C. Kurlander, Phys. Rev. Lett. 69, 2642 (1992).https://doi.org/PRLTAO

  10. 10. J. Kieffer et al., Phys. Rev. Lett. 62, 760 (1989); https://doi.org/PRLTAO
    J. Kieffer, 68, 480 (1992).

  11. 11. X. B. Liu, D. Umstadter, Phys. Rev. Lett. 69, 1935 (1992). https://doi.org/PRLTAO
    R. Fedosejevs, G. Enright, M. Richardson, Phys. Rev. Lett. 43, 1664 (1979).https://doi.org/PRLTAO

  12. 12. M. Tabak, J. Hammer, M. Glinsky, W. Kruer, S. Wilks, J. Woodworth, E. Campbell, M. Perry, Phys. Plasmas 1, 1626 (1994).https://doi.org/PHPAEN

  13. 13. J. Kmetec, C. Gordon, J. Macklin, B. Lemoff, G. Brown, S. Harris, Phys. Rev. Lett. 68, 1527 (1992). https://doi.org/PRLTAO
    A. Fews, P. Norreys, F. Beg, A. Bell, A. Dangor, C. Danson, P. Lee, S. Rose, Phys. Rev. Lett. 73, 1801 (1994).https://doi.org/PRLTAO

  14. 14. W. L. Kruer, The Physics of Laser‐Plasma Interactions, Addison‐Wesley, Reading, Mass. (1988).

  15. 15. T. Tajima, J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).https://doi.org/PRLTAO

  16. 16. M. Everett, A. Lal, D. Gordon, C. Clayton, K. Marsh, C. Joshi, Nature 368, 527–529, (1994). https://doi.org/NATUAS
    C. Clayton, K. Marsh, A. Dyson, M. Everett, A. Lal, W. Leemans, R. Williams, C. Joshi, Phys. Rev. Lett. 70, 37 (1993).https://doi.org/PRLTAO

  17. 17. S. C. Wilks, J. M. Dawson, W. B. Mori, Phys. Rev. Lett. 61, 337 (1988). https://doi.org/PRLTAO
    E. Yablanovitch, Phys. Rev. Lett. 31, 877 (1975).https://doi.org/PRLTAO

  18. 18. W. M. Wood, C. W. Siders, M. C. Downer, Phys. Rev. Lett. 67, 3523 (1991). https://doi.org/PRLTAO
    W. Wood, C. Siders, M. Downer, IEEE Trans. Plasma Sci. 21, 20 (1993).https://doi.org/ITPSBD

  19. 19. W. Mori, Phys. Rev. A 44, 5118 (1991). https://doi.org/PLRAAN
    M. Lampe, E. Ott, J. Walker, Phys. Fluids 10, 42 (1978). https://doi.org/PFLDAS
    V. I. Samanova, Sov. Radiophys. Quantum Electron. 10, 599 (1967).
    P. B. Corkum, Opt. Lett. 8, 514 (1983).https://doi.org/OPLEDP

  20. 20. R. SavageJr, R. Brogle, W. Mori, C. Joshi, Phys. Rev. Lett. 68, 946, (1992). https://doi.org/PRLTAO
    R. L. SavageJr et al., IEEE Trans. Plasma Sci. 21, 5 (1993).https://doi.org/ITPSBD

  21. 21. W. B. Mori, T. Katsouleas, Phys. Rev. Lett. 69, 3495 (1992).https://doi.org/PRLTAO

  22. 22. S. Wilks, J. Dawson, W. Mori, T. Katsouleas, H. Jones, Phys. Rev. Lett. 62, 2600 (1989).https://doi.org/PRLTAO

  23. 23. C. B. Darrow, C. Coverdale, M. D. Perry, W. B. Mori, C. Clayton, K. Marsh, C. Joshi, Phys. Rev. Lett. 69, 442 (1992).https://doi.org/PRLTAO

  24. 24. P. Sprangle, E. Esarey, A. Ting, G. Joyce, Appl. Phys. Lett. 53, 2146 (1988). https://doi.org/APPLAB
    P. Sprangle, E. Esarey, A. Ting, Phys. Rev. Lett. 64, 2011 (1990). https://doi.org/PRLTAO
    P. Sprangle, E. Esarey, Phys. Rev. Lett. 67, 2021 (1991). https://doi.org/PRLTAO
    C. Max, J. Arons, A. B. Langdon, Phys. Rev. Lett. 9, 85 (1974).https://doi.org/PRLTAO

  25. 25. R. Carman, C. Rhodes, R. Benjamin, Phys. Rev. A 24, 2649 (1981).https://doi.org/PLRAAN

More about the Authors

Chandrashekhar J. Joshi. University of California, Los Angeles.

Paul B. Corkum. Canadian National Research, Council's Steacie Institute, Ottawa.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1995_01.jpeg

Volume 48, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.