Discover
/
Article

Information is physical

MAY 01, 1991
There are no unavoidable energy consumption requirements per step in a computer. Related analysis has provided insights into the measurement process and the communications channel, and has prompted speculations about the nature of physical laws.
Rolf Landauer

Thermodynamics arose in the 19th century out of the attempt to understand the performance limits of steam engines in a way that would anticipate all further inventions. Claude Shannon, after World War II, analyzed the limits of the communications channel. It is no surprise, then, that shortly after the emergence of modern digital computing, similar questions appeared in that field. It was not hard to associate a logic gate with a degree of freedom, then to associate kT with that, and presume that this energy has to be dissipated at every step. Similarly, it seemed obvious to many that the uncertainty principle, ΔEΔt∼ℏ, could be used to calculate a required minimal energy involvement, and therefore energy loss, for very short Δt.

This article is only available in PDF format

References

  1. 1. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948); https://doi.org/BSTJAN
    ibid, p. 623.

  2. 2. T. Toffoli, N. Margolus, Cellular Automata Machines, MIT P., Cambridge, Mass. (1987).

  3. 3. K. Zuse, Int. J. Theor. Phys. 21, 589 (1982); https://doi.org/IJTPBM
    Rechnender Raum, Friedrich Vieweg und Sohn, Braunschweig (1969).

  4. 4. R. Wright, Three Scientists and Their Gods, Times Books, New York (1988).

  5. 5. See The Economist, 22 April 1989, p. 81.

  6. 6. C. H. Bennett, IBM J. Res. Dev. 17, 525 (1973).https://doi.org/IBMJAE

  7. 7. E. Fredkin, T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).https://doi.org/IJTPBM

  8. 8. C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).https://doi.org/IJTPBM

  9. 9. J. von Neumann, US Patent 2 815 488, filed 28 April 1954.
    E. Goto, J. Electr. Commun. Eng., Japan, 38, 770 (1955).

  10. 10. K. K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). https://doi.org/IJTPBM
    K. K. Likharev, S. V. Rylov, V. K. Semenov, IEEE Trans. Magn. 21, 947 (1985).https://doi.org/IEMGAQ

  11. 11. C. H. Bennett, IBM J. Res. Dev. 32, 16 (1988).https://doi.org/IBMJAE

  12. 12. R. Landauer, in Selected Topics in Signal Processing, S. Haykin, ed., Prentice‐Hall, Englewood Cliffs, N.J. (1989), p. 18. (Printed version has some figures oriented incorrectly).

  13. 13. E. Biedermann, PHYSICS TODAY November 1990, p. 122.

  14. 14. E. Goto, N. Yoshida, K. F. Loe, W. Hioe, in Proc. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo 1989, S. Kobayashi, H. Ezawa, Y. Murayama, S. Nomura, eds., Phys. Soc. Japan, Tokyo (1990) p. 412.

  15. 15. L. Szilard, Z. Phys. 53, 840 (1929); https://doi.org/ZEPYAA
    English translation in J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement, Princeton U.P., Princeton 1983, p. 539.

  16. 16. L. Brillouin in Science and Information Theory, Academic Press, New York (1956), p. 162.
    D. Gabor, in Progress in Optics, vol. I, E. Wolf, ed. North‐Holland, Amsterdam (1961) p. 109.

  17. 17. C. H. Bennett, Sci. Am., November, 1987, p. 108.

  18. 18. O. Penrose, Foundations of Statistical Mechanics, Pergamon, Oxford (1970).

  19. 19. W. H. Zurek, Nature 341, 119 (1989). https://doi.org/NATUAS
    See also C. M. Caves, W. G. Unruh, W. H. Zurek, Phys. Rev. Lett. 65, 1387 (1990).https://doi.org/PRLTAO

  20. 20. H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, Computing, Princeton U.P., Princeton (1990).

  21. 21. P. Benioff, J. Stat. Phys. 22, 563 (1980); https://doi.org/JSTPBS
    P. Benioff, J. Stat. Phys. 29, 515 (1982);
    P. Benioff, Phys. Rev. Lett. 48, 1581 (1982).https://doi.org/PRLTAO

  22. 22. D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989). https://doi.org/PRLAAZ
    P. Benioff, in New Techniques and Ideas in Quantum Measurement Theory, Ann. N. Y. Acad. Sci., vol. 480, D. M. Greenberger, ed., (1986) p. 475;
    N. Margolus, ibid., p. 487.
    A. Peres, Phys. Rev. A 32, 3266 (1985); https://doi.org/PLRAAN
    W. H. Zurek, Phys. Rev. Lett. 53, 391 (1984).https://doi.org/PRLTAO

  23. 23. R. Feynman, Opt. News 11, 11 (1985);
    reprinted in R. Feynman, Found. Phys. 16, 507 (1986).https://doi.org/FNDPA4

  24. 24. J. A. Wheeler in Proc. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo 1989, S. Kobayashi, H. Ezawa, Y. Murayama, S. Nomura, eds., Phys. Soc. Japan, Tokyo, (1990), p. 354;
    IBM J. Res. Dev. 32, 4 (1988).https://doi.org/IBMJAE

More about the Authors

Rolf Landauer. Thomas J. Watson Research Center, Yorktown Heights, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1991_05.jpeg

Volume 44, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.