Discover
/
Article

High‐voltage electron microscopy

JUL 01, 1968
British, French, Japanese and US teams added accelerators to electron microscopes. Now voltages ten times conventional levels permit viewing of thicker, more representative specimens.

DOI: 10.1063/1.3035052

V. Ellis Cosslett

A SECOND GENERATION of electron microscopes, using ten times the voltage of conventional instruments, is beginning to fulfill designers’ hopes of allowing study of thicker specimens with less radiation damage. Voltages in the 1‐megavolt range have reduced the effect of chromatic aberration so that, a fixed value of resolution, usable specimen thickness can be increased roughly in the same ratio as voltage until it reaches a limit set by image visibility. Apart from a scaling up of the whole instrument, the only major difference in design is the insertion of an accelerator between the electron gun and the microscope itself. High‐voltage instruments are being used in metal studies by investigators who want a specimen thick enough to display bulk properties and, in biology, to probe living matter. A still larger machine is under construction in France.

This article is only available in PDF format

References

  1. 1. L. Reimer, Z. Naturforsch. 21a, 1489 (1966).

  2. 2. V. E. Cosslett, Optik 25, 383 (1967).

  3. 3. F. Lenz, Z. Naturforsch. 9a, 185 (1954).

  4. 4. G. H. Smith, R. E. Rurge, Proc. Phys. Soc. 81, 612 (1963).https://doi.org/PPSOAU

  5. 5. G. H. Curtis, V. E. Cosslett, R. P. Ferrier, in Proc. 4th European Conf. Elect. Mic., Rome (1968); in press.

  6. 6. R. E. Burge, G. H. Smith, Nature 195, 140 (1962).https://doi.org/NATUAS

  7. 7. H. Hashimoto, A. Howie, M. J. Whelan, Phil. Mag. 5, 967 (1960); https://doi.org/PHMAA4
    H. Hashimoto, A. Howie, M. J. Whelan, Proc. Roy. Soc. A261, 80 (1962).

  8. 8. A. Howie, Phil. Mag. 14, 223 (1966).https://doi.org/PHMAA4

  9. 9. H. Hashimoto, J. Appl. Phys. 35, 277 (1964).https://doi.org/JAPIAU

  10. 10. G. Thomas, Phil. Mag. 17, 1097 (1968).https://doi.org/PHMAA4

  11. 11. R. Uyeda, M. Nonoyama, Japan J. Appl. Phys. 6, 557 (1967).https://doi.org/JJAPA5

  12. 12. M. J. Makin, in Proc. 4th European Conf. Elect. Mic., Rome (1968); in press.

  13. 13. K. C. A. Smith, K. T. Considine, V. E. Cosslett, in Proc. 6th Internat. Congr. Elect. Mic., Kyoto (Maruzen, Tokyo) 1, 99 (1966).

  14. 14. G. Dupouy, F. Perrier, J. Microscopie 1, 167 (1962).

  15. 15. H. Fujita, Japan J. Appl. Phys. 6, 214 (1967).https://doi.org/JJAPA5

  16. 16. G. Dupouy, F. Perrier, C. R. Acad. Sci. (Paris) 253, 2435 (1961); https://doi.org/COREAF
    G. Dupouy, F. Perrier, 258, 4213 (1964).https://doi.org/COREAF , Acad. Sci., Paris, C. R.

  17. 17. U. Valdrè, M. J. Goringe, J. W. Steeds, Proc. 4th European Conf. Elect. Mic., Rome (1968); in press.

  18. 18. I. B. Puchalska, R. P. Ferrier, Thin Solid Films, 1, 437 (1967–68); https://doi.org/THSFAP
    Physica Status Solidi (1968).

  19. 19. G. Dupouy, F. Perrier, C. R. Acad. Sci. (Paris) 261, 4649 (1965).https://doi.org/COREAF

  20. 20. K. Kobayashi, K. Sakaoku, in Quantitative Electron Microscopy, (G. F. Bahr, E. H. Zeitler, eds.) Williams and Wilkins, Baltimore (1965), p 359.

  21. 21. K. J. Hale, M. Henderson‐Brown, Proc. 4th European Conf. Elect. Mic., Rome (1968); in press.

  22. 22. G. Dupouy, F. Perrier, L. Durrieu, C. R. Acad. Sci. (Paris) 251, 2836 (1960).https://doi.org/COREAF

  23. 23. G. Dupouy, in Adv. Optical and Elect. Mic. 2, 167 (1968).

More about the Authors

V. Ellis Cosslett. Cavendish Laboratory, Cambridge.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1968_07.jpeg

Volume 21, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.