Discover
/
Article

High‐resolution spectroscopy of atoms and molecules

MAY 01, 1977
New laser techniques, pulsed and continuous, which make it possible to see optical spectra without Doppler broadening, to label energy levels, and to enhance sensitivity, are now opening new applications.
Theodor W. Hänsch

Lasers are rejuvenating, even revolutionizing, the field of spectroscopy of atoms and molecules. Compared with the light of conventional sources, laser light is more—sometimes dramatically more—powerful, directional, spectrally pure and coherent. Laser light can be generated in extremely short pulses. Furthermore, tunable lasers can operate at wavelengths at which intense conventional sources such as spectral lamps simply have not been available. Lasers thus can enormously enhance the sensitivity and application range of classical spectroscopic methods, such as absorption spectroscopy, fluorescence spectroscopy and Raman spectroscopy.

This article is only available in PDF format

References

  1. 1. Laser Spectroscopy of Atoms and Molecules (H. Walther, ed.), Springer, New York (1976).

  2. 2. High Resolution Laser Spectroscopy (H. Shimoda, ed.), Springer, New York (1976).

  3. 3. T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).https://doi.org/OPCOB8

  4. 4. V. S. Letokhov, B. D. Pavlik, Appl. Phys. 9, 229 (1976).https://doi.org/APHYCC

  5. 5. W. E. LambJr, Phys. Rev. A 134, 1429 (1964).https://doi.org/PRVAAH

  6. 6. R. A. Macfarlane, W. R. BennettJr, W. E. LambJr, Appl. Phys. Lett. 2, 189 (1963).https://doi.org/APPLAB

  7. 7. A. Szöke, A. Javan, Phys. Rev. Lett. 10, 521 (1963).https://doi.org/PRLTAO

  8. 8. P. H. Lee, M. L. Skolnick, Appl. Phys. Lett. 10, 3641 (1967).https://doi.org/APPLAB

  9. 9. J. L. Hall, C. J. Bordé, K. Uehara, Phys. Rev. Lett. 37, 1339 (1976).https://doi.org/PRLTAO

  10. 10. C. Bordé, C. R. Acad. Sci. Paris 271, 371 (1970).

  11. 11. T. W. Hänsch, M. D. Levenson, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).https://doi.org/PRLTAO

  12. 12. T. W. Hänsch, P. Toschek, IEEE J. Quant. Electr. QE‐4, 467 (1968).https://doi.org/IEJQA7

  13. 13. C. Freed, A. Javan, Appl. Phys. Lett. 17, 53 (1970).https://doi.org/APPLAB

  14. 14. M. S. Sorem, A. L. Schawlow, Opt. Commun. 5, 148 (1972).https://doi.org/OPCOB8

  15. 15. C. Bordé, G. Camy, B. Decomps, L. Pottier, Colloques Internationaux du C.N.R.S. No. 217, Paris (1974), page 231.

  16. 16. T. W. Hänsch, Appl. Optics 11, 895 (1972).https://doi.org/APOPAI

  17. 17. B. B. Snavely, in Dye Lasers (F. P. Schäfer, ed.). Springer, New York (1973) page 91.

  18. 18. T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Nature 235, 63 (1972).https://doi.org/NATUAS

  19. 19. T. W. Hänsch, M. H. Nayfeh, S. A. Lee, S. M. Curry, I. S. Shahin, Phys. Rev. Lett. 32, 1396 (1974).https://doi.org/PRLTAO

  20. 20. S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975).https://doi.org/PRLTAO

  21. 21. C. Wieman, T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976).https://doi.org/PRLTAO

  22. 22. L. S. Vasilenko, V. P. Chebotaev, A. V. Shishaev, JETP Letters 12, 113 (1970).https://doi.org/JTPLA2

  23. 23. G. Grynberg, F. Biraben, M. Massini, B. Cagnac, Phys. Rev. Letters 37, 283 (1976).https://doi.org/PRLTAO

  24. 24. T. W. Hänsch, S. A. Lee, R. Wallenstein, C. Wieman, Phys. Rev. Lett. 34, 307 (1975).https://doi.org/PRLTAO

  25. 25. Ye. V. Baklanov, V. P. Chebotaev, B. Ta. Dubetsky, Appl. Phys. 11, 201 (1976).https://doi.org/APHYCC

  26. 26. N. F. Ramsey, Molecular Beams, Oxford UP, London (1956), page 124.

  27. 27. J. C. Bergquist, S. A. Lee, J. L. Hall, Phys. Rev. Lett. 38, 159 (1977).https://doi.org/PRLTAO

  28. 28. M. Salour, C. Cohen‐Tannoudji, Phys. Rev. Lett. 38, 757 (1977).https://doi.org/PRLTAO

  29. 29. R. Teets, J. Eckstein, T. W. Hänsch, Phys. Rev. Lett. 38, 760 (1977).https://doi.org/PRLTAO

  30. 30. R. Teets, R. Feinberg, T. W. Hänsch, A. L. Schawlow, Phys. Rev. Lett. 37, 683 (1976).https://doi.org/PRLTAO

  31. 31. M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671 (1976).https://doi.org/PRLTAO

More about the Authors

Theodor W. Hänsch. Stanford University, Stanford, California.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1977_05.jpeg

Volume 30, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.