Discover
/
Article

High‐resolution analytical electron microscopy

MAR 01, 1981
One can use elastically and inelastically scattered electrons and x rays from a sample illuminated by an electron beam to determine the composition and structure of extremely small regions of the sample.
R. W. Carpenter

The objective of high‐resolution analytical electron microscopy is the determination of the local structure of a wide variety of specimens. This is accomplished by collecting and analyzing the many different signals emitted by a sample when it is irradiated by a high‐energy (around 100 keV) electron probe. At present one can determine the structure and composition of solids at spatial resolutions of 50 nm or less; the results are, in general, characteristic of the bulk solids from which the specimens were taken. Such detailed knowledge of the local structure and composition of solids is required especially in geology, materials science, solid‐state physics and solid‐state chemistry, where properties such as flow stress, fracture modes, electron mobilities and phase transformations are highly sensitive to details of structure and composition.

This article is only available in PDF format

References

  1. 1. J. Hillier, R. F. Baker, J. Appl. Phys. 15, 663 (1944).https://doi.org/JAPIAU

  2. 2. Prc. Elec. Mic. Soc. Am., 29th Ann. Mtg., C. J. Arceneaux, ed., Clartor’s Pub. Div. Baton Rouge, La. (1971). Articles by J. C. Russ, page 54; R. H. Duff, S. L. Bender, page 56;
    R. H. Geiss, W. A. Jesser, page 60.

  3. 3. W. Kossel, G. Mollenstedt, Ann. Physik 5, 113 (1939).

  4. 4. A. V. Crewe, J. Wall, L. M. Welter, J. Appl. Phys. 39, 5681 (1968).https://doi.org/JAPIAU

  5. 5. D. M. Maher, Scanning Electron Microscopy/1974, IIT Res. Inst., Chicago, Ill. (1974), page 215.

  6. 6. R. W. Carpenter, J. Bentley, E. A. Kenik, Scanning Electron Microscopy/1977, IIT Res. Inst., Chicago, Ill. (1977), page 411.

  7. 7. D. C. Joy, Scanning Electron Microscopy/1977/I, IIT Res. Inst., Chicago, Ill. (1977), page 1.

  8. 8. J. J. Hren in Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, D. C. Joy, eds, Plenum, N.Y. (1979), page 481.

  9. 9. N. Oaskabe, K. Yagi, G. Honjo, Jap. J. Appl. Phys. 19, L309–L312 (1980).

  10. 10. R. F. Egerton, Ultramicroscopy 3, 243 (1978).https://doi.org/ULTRD6

  11. 11. D. B. Williams, J. W. Edington, J. Microscopy 108, 113 (1976).

  12. 12. D. C. Joy, D. M. Maher, Scanning Electron Microscopy/1977/I, IIT Res. Inst. Chicago, Ill. (1977).

  13. 13. M. Isaacson, D. Johnson, Ultramicroscopy 1, 33 (1975).https://doi.org/ULTRD6

  14. 14. N. J. Zaluzec, in reference 8, page 121.

  15. 15. J. Goldstein, in reference 8, page 83.

  16. 16. D. M. Maher, Proc. Batelle Conf. on Microanalysis, Seattle, 1980 (in press).

  17. 17. N. J. Zaluzec, Prc. Elec. Mic. Soc. Of Amer., 38th Ann. Mtg., G. W. Bailey, eds., Clartor’s Pub. Div., Baton Rouge, La. (1980) page 112.

  18. 18. R. W. Carpenter, J. Bentley, Scanning Electron Microscopy/1979/I, SEM, Inc. AMF O’Hare, Ill., (1979) page 153.

  19. 19. R. W. Carpenter, J. C. H. Spence, Acts Crystallographica (in press).

  20. 20. P. M. Jones, G. M. Rackham, J. W. Steeds, Proc. Roy. Soc. London A354, 197 (1977).

  21. 21. B. F. Buxton, J. A. Eades, J. W. Steeds, G. M. Rackham, Phil. Trans. Roy. Soc. A281, 171 (1976).

  22. 22. J. M. Cowley, Chemica Scripta 14, 83 (1978–79).

  23. 23. J. M. Cowley, S. Iijima, PHYSICS TODAY 30, 32 (1977).

More about the Authors

R. W. Carpenter. Center for Solid‐State Science, Arizona State University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1981_03.jpeg

Volume 34, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.