Discover
/
Article

Form factors of elementary particles

JAN 01, 1969
Scattering of electrons on nucleons and electron‐positron scattering in colliding‐beam experiments give a measure of the size and charge distribution of the proton, neutron and pion. Theoretical understanding is fairly advanced for the pion but still uncertain for the nucleons.
Richard Wilson

How BIG ARE the elementary particles? How is their charge distributed? These questions are tackled with form factors, which are measures of the charge and magnetic‐moment distributions in the particles. Scattering of electrons on nucleons, and recent measurements made with electron–positron colliding beams, give form factors for the proton, neutron and pion. The behavior of the pion form factor can be fairly well understood by the “rho‐dominance model,” but the nucleon form factors are not so easy to understand. Different models are currently being examined in an attempt to solve this basic problem in strong‐interaction physics.

This article is only available in PDF format

References

  1. 1. R. W. McAllister, R. Hofstadter, Phys. Rev. 102, 851 (1956).https://doi.org/PHRVAO

  2. 2. E. Fermi, L. Marshall, Phys. Rev. 72, 1139 (1947).https://doi.org/PHRVAO

  3. 3. S. Furuichi, K. Watanabe, Prog. Theor. Phys. 35, 174 (1966).https://doi.org/PTPKAV

  4. 4. N. G. Antoniou, J. E. Bowcock, Phys. Rev. 159, 1257 (1967).https://doi.org/PHRVAO

  5. 5. P. Signell, J. W. Durso, Phys. Rev. Letters 18, 185 (1967).https://doi.org/PRLTAO

  6. 6. J. S. Levinger, Phys. Rev. 162, 1589 (1967).https://doi.org/PHRVAO

  7. 7. S. D. Drell, Comments on Nuclear and Particle Physics 2, 36 (1968).

  8. 8. T. T. Wu, C. N. Yang, Phys. Rev. 137B, 708 (1965).https://doi.org/PHRVAO

  9. 9. T. Janssens et al., Phys. Rev. 142, 922 (1966).https://doi.org/PHRVAO

  10. 10. E. B. Hughes et al., Phys. Rev. 139B, 458 (1965).https://doi.org/PHRVAO

  11. 11. D. H. Coward et al., Phys. Rev. Letters 20, 292 (1968).https://doi.org/PRLTAO

  12. 12. K. Berkelman et al., Phys. Rev. 130, 2061 (1963).https://doi.org/PHRVAO

  13. 13. C. W. Akerlof et al., Phys. Rev. 135B, 810 (1966).https://doi.org/PHRVAO

  14. 14. C. W. Akerlof et al., Phys. Rev. 163, 1482 (1967).https://doi.org/PHRVAO

  15. 15. M. Goitein et al., Phys. Rev. Letters 18, 1016 (1967).https://doi.org/PRLTAO

  16. 16. R. Budnitz et al., Phys. Rev. 173, 1357 (1968).https://doi.org/PHRVAO

  17. 17. C. Mistretta et al., Phys. Rev. Letters 20, 1523 (1968).https://doi.org/PRLTAO

  18. 18. J. K. de Pagter et al., Phys. Rev. Letters 17, 767 (1967).https://doi.org/PRLTAO

  19. 19. B. Dudelzak et al., Nuovo Cimento 28, 18 (1963).https://doi.org/NUCIAD

  20. 20. J. E. Augustin et al., Phys. Rev. Letters 20, 126 (1968).https://doi.org/PRLTAO

  21. 21. V. L. Auslander et al., Phys. Letters 25B, 433 (1967).

  22. 22. W. Albrecht et al., Phys. Rev. Letters 17, 1192 (1966).https://doi.org/PRLTAO

  23. 23. J. G. Asbury et al., Phys. Rev. Letters 19, 869 (1967).https://doi.org/PRLTAO

  24. 24. A. Wehmann et al., Phys. Rev. Letters 20, 1523 (1968).https://doi.org/PRLTAO

  25. 25. M. M. Block et al., Phys. Rev. 169, 1074 (1968).https://doi.org/PHRVAO

  26. 26. A. Tollestrup, private communication.

  27. 27. B. D. Hyams et al., Phys. Letters 24B, 634 (1967).

  28. 28. M. Conversi et al., Nuovo Cimento 40, 690 (1965).https://doi.org/NUCIAD

  29. 29. V. E. Krohn et al., Phys. Letters 18, 297 (1965).https://doi.org/PHLTAM

  30. 30. E. Melkonian, B. M. Rustad, W. W. HavensJr, Phys. Rev. 114, 1571 (1959).https://doi.org/PHRVAO

  31. 31. M. N. Khatchaturyan et al., Phys. Letters, 24B, 349 (1967).

More about the authors

Richard Wilson, Harvard faculty.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1969_01.jpeg

Volume 22, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.