Discover
/
Article

Form factors of elementary particles

JAN 01, 1969
Scattering of electrons on nucleons and electron‐positron scattering in colliding‐beam experiments give a measure of the size and charge distribution of the proton, neutron and pion. Theoretical understanding is fairly advanced for the pion but still uncertain for the nucleons.

DOI: 10.1063/1.3035356

Richard Wilson

How BIG ARE the elementary particles? How is their charge distributed? These questions are tackled with form factors, which are measures of the charge and magnetic‐moment distributions in the particles. Scattering of electrons on nucleons, and recent measurements made with electron–positron colliding beams, give form factors for the proton, neutron and pion. The behavior of the pion form factor can be fairly well understood by the “rho‐dominance model,” but the nucleon form factors are not so easy to understand. Different models are currently being examined in an attempt to solve this basic problem in strong‐interaction physics.

References

  1. 1. R. W. McAllister, R. Hofstadter, Phys. Rev. 102, 851 (1956).https://doi.org/PHRVAO

  2. 2. E. Fermi, L. Marshall, Phys. Rev. 72, 1139 (1947).https://doi.org/PHRVAO

  3. 3. S. Furuichi, K. Watanabe, Prog. Theor. Phys. 35, 174 (1966).https://doi.org/PTPKAV

  4. 4. N. G. Antoniou, J. E. Bowcock, Phys. Rev. 159, 1257 (1967).https://doi.org/PHRVAO

  5. 5. P. Signell, J. W. Durso, Phys. Rev. Letters 18, 185 (1967).https://doi.org/PRLTAO

  6. 6. J. S. Levinger, Phys. Rev. 162, 1589 (1967).https://doi.org/PHRVAO

  7. 7. S. D. Drell, Comments on Nuclear and Particle Physics 2, 36 (1968).

  8. 8. T. T. Wu, C. N. Yang, Phys. Rev. 137B, 708 (1965).https://doi.org/PHRVAO

  9. 9. T. Janssens et al., Phys. Rev. 142, 922 (1966).https://doi.org/PHRVAO

  10. 10. E. B. Hughes et al., Phys. Rev. 139B, 458 (1965).https://doi.org/PHRVAO

  11. 11. D. H. Coward et al., Phys. Rev. Letters 20, 292 (1968).https://doi.org/PRLTAO

  12. 12. K. Berkelman et al., Phys. Rev. 130, 2061 (1963).https://doi.org/PHRVAO

  13. 13. C. W. Akerlof et al., Phys. Rev. 135B, 810 (1966).https://doi.org/PHRVAO

  14. 14. C. W. Akerlof et al., Phys. Rev. 163, 1482 (1967).https://doi.org/PHRVAO

  15. 15. M. Goitein et al., Phys. Rev. Letters 18, 1016 (1967).https://doi.org/PRLTAO

  16. 16. R. Budnitz et al., Phys. Rev. 173, 1357 (1968).https://doi.org/PHRVAO

  17. 17. C. Mistretta et al., Phys. Rev. Letters 20, 1523 (1968).https://doi.org/PRLTAO

  18. 18. J. K. de Pagter et al., Phys. Rev. Letters 17, 767 (1967).https://doi.org/PRLTAO

  19. 19. B. Dudelzak et al., Nuovo Cimento 28, 18 (1963).https://doi.org/NUCIAD

  20. 20. J. E. Augustin et al., Phys. Rev. Letters 20, 126 (1968).https://doi.org/PRLTAO

  21. 21. V. L. Auslander et al., Phys. Letters 25B, 433 (1967).

  22. 22. W. Albrecht et al., Phys. Rev. Letters 17, 1192 (1966).https://doi.org/PRLTAO

  23. 23. J. G. Asbury et al., Phys. Rev. Letters 19, 869 (1967).https://doi.org/PRLTAO

  24. 24. A. Wehmann et al., Phys. Rev. Letters 20, 1523 (1968).https://doi.org/PRLTAO

  25. 25. M. M. Block et al., Phys. Rev. 169, 1074 (1968).https://doi.org/PHRVAO

  26. 26. A. Tollestrup, private communication.

  27. 27. B. D. Hyams et al., Phys. Letters 24B, 634 (1967).

  28. 28. M. Conversi et al., Nuovo Cimento 40, 690 (1965).https://doi.org/NUCIAD

  29. 29. V. E. Krohn et al., Phys. Letters 18, 297 (1965).https://doi.org/PHLTAM

  30. 30. E. Melkonian, B. M. Rustad, W. W. HavensJr, Phys. Rev. 114, 1571 (1959).https://doi.org/PHRVAO

  31. 31. M. N. Khatchaturyan et al., Phys. Letters, 24B, 349 (1967).

More about the Authors

Richard Wilson. Harvard faculty.

This Content Appeared In
pt-cover_1969_01.jpeg

Volume 22, Number 1

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.