Discover
/
Article

Fifty years of matter waves

FEB 01, 1974
Louis de Broglie’s conception of the wave‐particle duality in 1923 opened up new experimental possibilities, initiating the era of modern quantum mechanics.

DOI: 10.1063/1.3128444

Heinrich A. Medicus

Fifty years have passed since Louis de Broglie created the theory of matter waves and published his first papers on the subject—inaugurating the era of modern quantum mechanics. De Broglie’s undertaking was a very bold one. Unlike Planck’s work in the older quantum theory, which had its origin in the measurements of black‐body radiation, and unlike the photon hypothesis of Einstein, where the early experiments on the photoelectric effect offered some corroboration, de Broglie’s theory lacked the support of any direct experimental evidence. Had it not been for the intervention of such established figures as Langevin and Einstein, who recognized the importance of what he had accomplished, de Broglie’s work probably would have had little immediate effect.

References

  1. 1. M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw Hill, New York (1966).

  2. 2. F. Hund, Geschichte der Quantentheorie, Bibliographisches Institut, Mannheim (1967).

  3. 3. J. Gerber, Arch. Hist. Exact Sciences 5, 349 (1969).

  4. 4. L. de Broglie, Journal de Physique, Series VI, 3, 422 (1922).

  5. 5. L. de Broglie, Comptes Rendus 175, 811 (1922).https://doi.org/COREAF

  6. 6. Archive for the History of Quantum Physics.

  7. 7. L. de Broglie, Comptes Rendus 177, 507, 548 (1923).https://doi.org/COREAF

  8. 8. L. de Broglie, Nature 112, 540 (1923).https://doi.org/NATUAS

  9. 9. L. de Broglie, letter of 17 September 1973 to the author.

  10. 10. L. de Broglie, Phil. Mag. 47, 446 (1924).https://doi.org/PHMAA4

  11. 11. L. de Broglie, Thèse de doctorat, Masson, Paris (1924);
    reprinted 1963;
    also Annales de Physique 3, 22 (1925).

  12. 12. Louis de Broglie—Physicien et Penseur (A. George, ed.), Albin Michel, Paris (1953).

  13. 13. L. de Broglie, Comptes Rendus B 277, 71 (1973).

  14. 14. R. Kubli, Arch. Hist. Exact Sciences 7, 26 (1970).

  15. 15. Reference 6.

  16. 16. Reference 12.

  17. 17. V. V. Raman, P. Forman, in Historical Studies in the Physical Sciences 1 (R. McCormmach, ed.), Univ. of Philadelphia Press (1969), page 291.

  18. 18. M. J. Klein, “Einstein and the Wave–Particle Duality,” in The Natural Philosopher (D. E. Gershenson and D. A. Greenberg, eds.) Xerox College Publishing (1964);
    reprinted in The Bobbs‐Merrill Reprint Series in the History of Science.

  19. 19. L. de Broglie, New Perspectives in Physics, Oliver and Boyd, Edinburgh (1962), page 139;
    trans. from Nouvelles perspectives en microphysique, Paris (1955).

  20. 20. A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Mathem.‐Naturwiss. Kl. 23, 3 (1925).

  21. 21. E. Schrödinger, Annalen der Physik 79, 734 (1926).

  22. 22. E. Schrödinger, in Briefe zur Wellenmechanik (K. Przimbram, ed.), Springer, Vienna (1963), page 24.

  23. 23. E. Schrödinger, Physikal. Zeitschr. 27, 95 (1926).

  24. 24. E. Schrödinger, Annalen der Physik 79, 372 (1926).

  25. 25. E. Schrödinger, Zeits. Physik 12, 13 (1922).

  26. 26. P. J. W. Debye, D. R. Corson, E. E. Salpeter, S. H. Bauer, Science 145, 554 (1964).https://doi.org/SCIEAS

  27. 27. W. Elsasser, letter of 21 August 1973 to the author.

  28. 28. C. Davisson, C. H. Kunsman, Science 54, 522 (1921); https://doi.org/SCIEAS
    Phys. Rev. 22, 242 (1923).https://doi.org/PHRVAO

  29. 29. C. W. Ramsauer, Annalen der Physik 72, 345 (1923).

  30. 30. W. Elsasser, Naturwiss. 13, 711 (1925).https://doi.org/NATWAY

  31. 31. Reference 27.

  32. 32. Reference 27.

  33. 33. M. Born in Albert Einstein—Philosopher and Scientist (P. A. Schilpp, ed.) 1, Harper, New York (1959), page 161;
    Nobel Lectures in Physics: 1942–1970, Elsevier, Amsterdam (1964), page 256;
    reference 12, page 165;
    reference 6;
    reference 35.

  34. 34. Reference 11.

  35. 35. Albert Einstein–Max Born Briefwechsel: 1916–1955, Nymphenburger, Munich (1969), page 119;
    The Born–Einstein Letters, Walker, New York (1971), page 83.

  36. 36. C. Davisson, L. H. Germer, Phys. Rev. 30, 705 (1927).https://doi.org/PHRVAO

  37. 37. K. K. Darrow, Bell System Technical Journal 30, 786 (1951).https://doi.org/BSTJAN

  38. 38. C. Davisson, L. H. Germer, Nature 119, 558 (1927).https://doi.org/NATUAS

  39. 39. G. P. Thomson, Am. J. Phys. 29, 821 (1961); https://doi.org/AJPIAS
    G. P. Thomson, Contemp. Phys. 9, 1 (1968).https://doi.org/CTPHAF

  40. 40. G. P. Thomson, Phil. Mag. 50, 163 (1925).https://doi.org/PHMAA4

  41. 41. G. P. Thomson, A. Reid, Nature 119, 890 (1927).https://doi.org/NATUAS

  42. 42. G. P. Thomson, A. Reid, Proc. Roy. Soc. (London) A, 117, 601 (1928).https://doi.org/PRLAAZ

  43. 43. E. G. Dymond, Nature 118, 336 (1926).https://doi.org/NATUAS

  44. 44. E. G. Dymond, Phys. Rev. 29, 433 (1927).https://doi.org/PHRVAO

  45. 45. Electrons et Photons, rapports et discussions du cinquième conseil de physique, Gauthier‐Villars, Paris (1928).

  46. 46. I. Estermann, O. Stern, Zeits. Physik 61, 95 (1930).

  47. 47. F. Knauer, O. Stern, Zeits. Physik 53, 779 (1929).

  48. 48. O. Stern, Naturwiss. 17, 391 (1929).https://doi.org/NATWAY

  49. 49. W. Elsasser, Comptes Rendus 202, 1029 (1936).https://doi.org/COREAF

  50. 50. H. von Halban, P. Preiswerk, Comptes Rendus 203, 73 (1936).https://doi.org/COREAF

  51. 51. D. P. Mitchell, P. N. Powers, Phys. Rev. 50, 486 (1936).https://doi.org/PHRVAO

  52. 52. G. C. Wick, Physikal. Zeits. 38, 403, 689 (1937).

  53. 53. See Phys. Rev. 70, 99 (1946).

  54. 54. W. H. Zinn, Phys. Rev. 71, 752 (1947).https://doi.org/PHRVAO

  55. 55. E. O. Wollan, C. G. Shull, Phys. Rev. 73, 830 (1948).https://doi.org/PHRVAO

  56. 56. M. E. Haine, T. Mulvey, J. Opt. Soc. Am. 42, 763 (1952).https://doi.org/JOSAAH

  57. 57. L. Marton, J. A. Simpson, J. A. Suddeth, Phys. Rev. 90, 490 (1953); https://doi.org/PHRVAO
    L. Marton, J. A. Simpson, J. A. Suddeth, Rev. Sc. Instr. 25, 1099 (1954);
    L. Marton, Science 118, 470 (1953).https://doi.org/SCIEAS

More about the Authors

Heinrich A. Medicus. Rensselaer Polytechnic Institute.

This Content Appeared In
pt-cover_1974_02.jpeg

Volume 27, Number 2

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.